Inverse source problem for linearized Navier-Stokes equations with data in arbitrary sub-domain

被引:24
|
作者
Choulli, Mourad [1 ]
Imanuvilov, Oleg Yu. [2 ]
Puel, Jean-Pierre [3 ,4 ]
Yamamoto, Masahiro [3 ]
机构
[1] Univ Lorraine, UMR 7122, LMAM, F-57045 Metz 1, France
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[3] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 1538914, Japan
[4] Univ Versailles St Quentin, Lab Math Appl, F-78035 Versailles, France
关键词
inverse source problem; Navier-Stokes equations; Carleman estimate; Lipschitz stability; LOGARITHMIC STABILITY; EXACT CONTROLLABILITY; LIPSCHITZ STABILITY; MAXWELLS EQUATIONS; HYPERBOLIC PROBLEM; UNIQUENESS;
D O I
10.1080/00036811.2012.718334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse problem of determining a spatially varying factor in a source term in the non-stationary linearized Navier-Stokes equations by observation data in an arbitrarily fixed sub-domain over some time interval. We prove the Lipschitz stability provided that the t-dependent factor satisfies a non-degeneracy condition. Our proof is based on a new Carleman estimate for the linearized Navier-Stokes equations.
引用
收藏
页码:2127 / 2143
页数:17
相关论文
共 50 条