Research on Fault Diagnosis of Wind Turbine Based on SCADA Data

被引:30
|
作者
Liu, Yirong [1 ]
Wu, Zidong [2 ]
Wang, Xiaoli [1 ]
机构
[1] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
[2] Nari Technol Co Ltd, Nanjing 211106, Peoples R China
关键词
Wind turbines; Generators; Temperature distribution; Predictive models; Prediction algorithms; Fault diagnosis; Wind turbine; fault warning; eXtreme gradient boosting (XGBoost); exponentially weighted moving-average (EWMA); supervisory control and data acquisition (SCADA); CHINA;
D O I
10.1109/ACCESS.2020.3029435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effective early warning of wind turbine failures is of great significance to reduce the operation and maintenance costs of wind farms and improve power generation efficiency. At present, most wind farms are installed with supervisory control and data acquisition (SCADA) system, and SCADA data contains a lot of hidden information, which can be used for fault early warning. This paper uses the generator temperature and gearbox oil temperature in the SCADA data as the entry point for fault warning. Firstly, the eXtreme gradient boosting (XGBoost) algorithm is used to establish the normal temperature regression prediction model of wind turbine components. Then, the residual between the predicted value and the actual value is calculated, and the change trend of the residual is monitored by the principle of exponentially weighted moving-average (EWMA) control chart. Finally, by setting an appropriate threshold, the variation trend of the residual is judged to determine the occurrence and development of the fault. This paper uses two fault detection methods: fixed threshold and dynamic threshold based on adaptive algorithm, and compares the advantages and disadvantages of the two methods. Based on the SCADA data of a wind farm in Inner Mongolia (China), this paper designs the fault early warning test of the wind turbine generator and gearbox. The experimental results show that for the generator, the fixed fault threshold method can give the fault alarm 3 hours in advance, while the dynamic fault threshold determination method can give fault alarm 4.25 hours in advance. For gearbox, the fixed fault threshold method can give the fault alarm 2 hours in advance, while the dynamic threshold fault diagnosis method can send out the fault alarm 2.75 hours in advance.
引用
收藏
页码:185557 / 185569
页数:13
相关论文
共 50 条
  • [1] Study of Wind Turbine Fault Diagnosis and Early Warning Based on SCADA Data
    Shi, Yilong
    Liu, Yirong
    Gao, Xiang
    IEEE ACCESS, 2021, 9 : 124600 - 124615
  • [2] Study of Wind Turbine Fault Diagnosis Based on Unscented Kalman Filter and SCADA Data
    Cao, Mengnan
    Qiu, Yingning
    Feng, Yanhui
    Wang, Hao
    Li, Dan
    ENERGIES, 2016, 9 (10):
  • [3] Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data
    Zhao, Yingying
    Li, Dongsheng
    Dong, Ao
    Kang, Dahai
    Lv, Qin
    Shang, Li
    ENERGIES, 2017, 10 (08)
  • [4] Applying thermophysics for wind turbine drivetrain fault diagnosis using SCADA data
    Qiu, Yingning
    Feng, Yanhui
    Sun, Juan
    Zhang, Wenxiu
    Infield, David
    IET RENEWABLE POWER GENERATION, 2016, 10 (05) : 661 - 668
  • [5] A Wind Turbine Fault Diagnosis Method with Self-updating Model based on SCADA Data Mining
    Qu, Fuming
    Liu, Jinhai
    Zhang, Yu
    Feng, Jian
    Hong, Xiaowei
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 91 - 96
  • [6] Wind Turbine Fault Diagnosis by the Approach of SCADA Alarms Analysis
    Wei, Lu
    Qian, Zheng
    Pei, Yan
    Wang, Jingyue
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [7] Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data
    Vidal, Yolanda
    Pozo, Francesc
    Tutiven, Christian
    ENERGIES, 2018, 11 (11)
  • [8] Fault Prediction of Wind Turbine Gearbox Based on SCADA Data and Machine Learning
    Rashid, Haroon
    Khalaji, Erfan
    Rasheed, Jawad
    Batunlu, Canras
    2020 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER INFORMATION TECHNOLOGIES (ACIT), 2020, : 391 - 395
  • [9] Wind turbine fault detection based on the transformer model using SCADA data
    Maldonado-Correa J.
    Torres-Cabrera J.
    Martín-Martínez S.
    Artigao E.
    Gómez-Lázaro E.
    Engineering Failure Analysis, 2024, 162
  • [10] A Condition Monitoring and Fault Isolation System for Wind Turbine Based on SCADA Data
    Liu, Xingchen
    Du, Juan
    Ye, Zhi-Sheng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (02) : 986 - 995