Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals

被引:31
|
作者
Wang, J. [1 ]
Deng, J. [1 ]
Feckan, M. [2 ,3 ]
机构
[1] Guizhou Univ, Guiyang, Peoples R China
[2] Comenius Univ, Bratislava, Slovakia
[3] Slovak Acad Sci, Inst Math, Bratislava, Slovakia
基金
中国国家自然科学基金;
关键词
Convex Function; Fractional Calculus; Fractional Differential Equation; Fractional Integral; Fundamental Identity;
D O I
10.1007/s11253-013-0773-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using two fundamental fractional integral identities, we deduce some new Hermite-Hadamard-type inequalities for differentiable r-convex functions and twice-differentiable r-convex functions involving Riemann-Liouville fractional integrals.
引用
收藏
页码:193 / 211
页数:19
相关论文
共 50 条
  • [1] Hermite–Hadamard-type inequalities for r-convex functions based on the use of Riemann–Liouville fractional integrals
    J. Wang
    J. Deng
    M. Fečkan
    Ukrainian Mathematical Journal, 2013, 65 : 193 - 211
  • [2] Hermite-Hadamard-type inequalities involving ψ-Riemann-Liouville fractional integrals via s-convex functions
    Zhao, Yong
    Sang, Haiwei
    Xiong, Weicheng
    Cui, Zhongwei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [3] Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals
    Sharma, Nidhi
    Singh, Sanjeev Kumar
    Mishra, Shashi Kant
    Hamdi, Abdelouahed
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [4] Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity
    Wang, JinRong
    Li, Xuezhu
    Feckan, Michal
    Zhou, Yong
    APPLICABLE ANALYSIS, 2013, 92 (11) : 2241 - 2253
  • [5] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Sarikaya, Mehmet Zeki
    Yildirim, Huseyin
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 1049 - 1059
  • [6] Hermite-Hadamard Type Riemann-Liouville Fractional Integral Inequalities for Convex Functions
    Tomar, Muharrem
    Set, Erhan
    Sarikaya, M. Zeki
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [7] THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Kunt, Mehmet
    Karapinar, Dunya
    Turhan, Sercan
    Iscan, Imdat
    MATHEMATICA SLOVACA, 2019, 69 (04) : 773 - 784
  • [8] Hermite-Hadamard Type Inequalities for s-Convex Functions via Riemann-Liouville Fractional Integrals
    Wang, Shu-Hong
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) : 1124 - 1134
  • [9] NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR CONVEX FUNCTIONS
    Qi, Yongfang
    Li, Guoping
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [10] HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT OF HARMONICALLY CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 74 - 82