DEVELOPMENT AND VALIDATION OF A 2D/3D FINITE ELEMENT MODEL OF A COMPOSITE HEMIPELVIS

被引:0
|
作者
Elenes, Egleide Y. [1 ]
Roan, Esra [1 ]
Marinescu, Ruxandra C. [2 ]
Janda, Haden A. [3 ]
机构
[1] Univ Memphis, Memphis, TN 38152 USA
[2] InMotion Orthopaed Res Ctrl, Memphis, TN USA
[3] InMot Orthopaed Res Ctr, Memphis, TN USA
关键词
STRUCTURAL-PROPERTIES; PELVIC FRACTURES; MECHANICAL VALIDATION; RISK-FACTORS; IN-VITRO; DESIGN; INJURIES; FIXATION; RECRUITS; FEMURS;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The use of mechanical analogue composite bone models for a range of biomechanical analyses and testing procedures has grown rapidly since their introduction by Sawbones (Pacific Research Laboratories, Inc., Vashon, WA). The advantages of these composite bones over cadaveric human bones include less variability among specimens, ready availability, lower costs and ease of handling. The fourth generation of Sawbones is now commercially available, which include human femurs, tibiae, humeri and hemipelves. A number of these composite bone models have been mechanically evaluated, i.e. the femur and tibia models, but others such as the hemipelvis have been neglected. However, the composite hemipelvis has been used in several biomechanical research studies; therefore, mechanical validation of the hemipelvis is required. For this study, a robust finite element (FE) model was constructed to investigate the mechanical behavior of a composite left hemipelvis bone model. A computer tomography (CT) scan of the analogue was obtained to produce a computer aided volumetric model. This model was imported and discretized in ABAQUS (Simulia, Providence, RI). In order to reduce computational costs, two-dimensional (2D) shell elements were used to mesh the thin cortical bone layer, while the cancellous bone region was meshed with solid, three-dimensional (3D) tetrahedral elements. A series of FE tests were performed on various shell-solid element domains, to ensure the use of 2D shell elements to model the cortical layer. Once the shell-solid approach was confirmed, a FE model of the hemipelvis was constructed and validated against strain gauge data from quasi-static loading experiments. Three rosette strain gauges (Vishay Micro-Measurements, Raleigh, NC) were mounted on regions of interest along the pubic body, inferior ramus and ischium of the composite hemipelvis. The hemipelvis was fully restrained in a custom-built fixture while quasi-statically loaded using an MTS Mini Bionix II to control the application of 600 N (MTS Systems Corp, Eden Prairie, MN). Maximum and minimum principal strains were calculated from the strain gauge readings and compared to FE predictions of strain at the mounting location of the strain gauges.
引用
收藏
页码:391 / +
页数:3
相关论文
共 50 条
  • [1] Nonintrusive coupling of 3D and 2D laminated composite models based on finite element 3D recovery
    Guguin, Guillaume
    Allix, Olivier
    Gosselet, Pierre
    Guinard, Stephane
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 98 (05) : 324 - 343
  • [2] 2D and 3D finite element analyses of overlapping tunnels
    Chen, Xian-Guo
    Wang, Xian-Jun
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2003, 38 (06):
  • [3] Development and Validation of Equivalent 2D Finite Element Model for Large Steam Turbine
    Park, Luke
    Kim, In-Gul
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2020, 44 (11) : 855 - 863
  • [4] 2D and 3D Finite Element Modeling of Electrical Machines
    Sabonnadiere, JC
    Foggia, A
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 1326 - 1329
  • [5] Efficient Finite Element Modeling of Scattering for 2D and 3D Problems
    Wilcox, Paul D.
    Velichko, Alexander
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2010, PTS 1 AND 2, 2010, 7650
  • [6] On the 2D and 3D finite element simulation in orthopaedy using MRI
    Bartos, M
    Kestranek, Z
    Kestránek, Z
    Nedoma, J
    Stehlík, J
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 50 (1-4) : 115 - 121
  • [7] Parameterized template meshes for 2D and 3D finite element modeling
    Rodger, D
    Hill-Cottingham, RJ
    Vong, PK
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1610 - 1614
  • [8] 2D and 3D Finite Element models for the edge trimming of CFRP
    Duboust, N.
    Pinna, C.
    Ghadbeigi, H.
    Ayvar-Soberanis, S.
    Phadnis, V. A.
    Collis, A.
    Kerrigan, K.
    16TH CIRP CONFERENCE ON MODELLING OF MACHINING OPERATIONS (16TH CIRP CMMO), 2017, 58 : 233 - 238
  • [9] A comparison of 2D and 3D finite element analysis of a restored tooth
    Romeed, SA
    Fok, SL
    Wilson, NHF
    JOURNAL OF ORAL REHABILITATION, 2006, 33 (03) : 209 - 215
  • [10] Parameterized template meshes for 2D and 3D finite element modeling
    Rodger, D.
    Hill-Cottingham, R.J.
    Vong, P.K.
    1610, IEEE, Piscataway, NJ, United States (36)