Equivalent circuits for repeater antennas used in wireless power transfer via magnetic resonance coupling

被引:5
|
作者
Imura, Takehiro [1 ]
机构
[1] Univ Tokyo, Dept Adv Energy, Grad Sch Frontier Sci, Tokyo 1138654, Japan
关键词
repeater antenna; wireless power transfer; resonance; magnetic coupling;
D O I
10.1002/eej.22360
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The demand for wireless power transfer via magnetic resonance coupling is increasing. Magnetic resonance coupling is a new technology that achieves power transfers across a large air gap by using transmitting and receiving antennas. However, repeater antennas can enable power transmission across an even larger distance. These repeater antennas without cross coupling can be expressed as a T-type equivalent circuit. Equivalent circuits that include cross coupling and mutual inductance, which is related to the antenna position, have not been studied. In this paper, a novel way to represent a repeater antenna by an equivalent circuit and a way to determine the mutual inductance are proposed and verified by performing an electromagnetic field analysis and experiment. (c) 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 183(1): 5162, 2013; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.22360
引用
收藏
页码:51 / 62
页数:12
相关论文
共 50 条
  • [1] Equivalent Circuit for Repeater Antenna for Wireless Power Transfer via Magnetic Resonant Coupling Considering Signed Coupling
    Imura, Takehiro
    [J]. 2011 6TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2011, : 1501 - 1506
  • [2] Optimization using Transmitting Circuit of Multiple Receiving Antennas for Wireless Power Transfer via Magnetic Resonance Coupling
    Imura, Takehiro
    Hori, Yoichi
    [J]. 2011 IEEE 33RD INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INTELEC), 2011,
  • [3] Multi-receiver and Repeater Wireless Power Transfer via Magnetic Resonance Coupling - Impedance Matching and Power Division Utilizing Impedance Inverter
    Koh, K. E.
    Beh, T. C.
    Imura, T.
    Hori, Y.
    [J]. 2012 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2012), 2012,
  • [4] Basic Study on Improving Power of wireless power transfer Via Magnetic resonance Coupling
    Li, Yang
    Yang, Qingxin
    Chen, Haiyan
    Zhang, Xian
    Jin, Liang
    [J]. ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEM AND MATERIAL ENGINEERING, 2012, 459 : 445 - +
  • [5] Seal Effects on Wireless Power Transfer Systems via Magnetic Resonance Coupling
    Shi, Xinzhi
    Qi, Chang
    Qu, Meiling
    Shi, Zhenhua
    Xu, Houxiang
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2014, : 623 - 624
  • [6] Effects of Obstacle Sizes on Wireless Power Transfer via Magnetic Resonance Coupling
    Shi, Xinzhi
    Qi, Chang
    Ye, Shuangli
    [J]. 2015 IEEE PELS Workshop on Emerging Technologies - Wireless Power (WoW), 2015,
  • [7] Effects of coil shapes on wireless power transfer via magnetic resonance coupling
    Shi, Xinzhi
    Qi, Chang
    Qu, Meiling
    Ye, Shuangli
    Wang, Gaofeng
    Sun, Lingling
    Yu, Zhiping
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2014, 28 (11) : 1316 - 1324
  • [8] Study on Optimal Parameters of Wireless Power Transfer via Magnetic Resonance Coupling
    Zhang, Tao
    Wu, Songsheng
    Zou, Chenxuanyi
    [J]. PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 4538 - 4543
  • [9] Effects of Coil Locations on Wireless Power Transfer via Magnetic Resonance Coupling
    Shi, Xinzhi
    Qi, Chang
    Qu, Meiling
    Ye, Shuangli
    Wang, Gaofeng
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2016, 31 (03): : 270 - 278
  • [10] Research on Tradeoff between Power and Efficiency of Wireless Power Transfer via Magnetic Resonance Coupling
    Gao, Tian
    Wang, Xin
    Jiang, Linrui
    Hou, Jing
    Yang, Yan
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2021, 16 (03) : 1427 - 1435