Defect Induced Changes in the Linear and Non-Linear Optical Properties of ZnO Nanotetrapods

被引:15
|
作者
Egblewogbe, Martin [1 ,2 ]
Anand, Benoy [3 ]
Podila, Ramakrishna [1 ]
Philip, Reji [4 ]
Sai, S. Siva Sankara [3 ]
Rao, Apparao M. [1 ,5 ]
机构
[1] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
[2] Univ Ghana, Dept Phys, Legon, Ghana
[3] Sri Sathya Sai Inst Higher Learning, Dept Phys, Prashanti Nilayam 515134, Andhra Pradesh, India
[4] Raman Res Inst, Light & Matter Phys Grp, Bangalore 560080, Karnataka, India
[5] Clemson Univ, Ctr Opt Mat Sci & Engn Technol, Clemson, SC 29634 USA
关键词
ZnO Nanotetrapods; Photoluminescence; Three-Photon Absorption; Optical Limiting; Defects; ZINC-OXIDE; TEMPERATURE; PHOTOLUMINESCENCE; NANOSTRUCTURES; NANOPARTICLES; ORIGIN;
D O I
10.1166/mex.2012.1089
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Here, we investigate the origin of green luminescence in ZnO nanotetrapods using nonlinear optical z-scan measurements in tandem with photoluminescence measurements. To this end, we synthesized ZnO nanotetrapods using a chemical vapor deposition (CVD) process, annealed at temperatures below 200 degrees C in O-2, Ar, and Zn metal vapor and measured the ensuing optical properties. Our z-scan measurements show that all samples exhibit an effective three-photon absorption (3PA). Furthermore, the 3PA coefficient varies with the incident laser intensity consistent with the presence of real mid-gap states. Interestingly, the rate of change for the 3PA coefficient is strongly influenced by the annealing conditions. Annealing in Zn vapor (Ar and O-2) leads to an increase (decrease) in green luminescence and the 3PA coefficient, strongly suggesting that the Zn interstitials are involved in the mechanism of green luminescence.
引用
收藏
页码:351 / 356
页数:6
相关论文
共 50 条
  • [1] Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses
    Petkov, K
    Ewen, PJS
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1999, 249 (2-3) : 150 - 159
  • [2] Defect-induced non-linear optical properties of silica-based optical fibres
    Poumellec, B.
    Fevrier, H.
    Gabriagues, J.-M.
    [J]. Materials science & engineering. B, Solid-state materials for advanced technology, 1991, B9 (04): : 449 - 453
  • [3] Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films
    Frumar, M
    Jedelsky, J
    Frumarová, B
    Wágner, T
    Hrdlicka, M
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2003, 326 : 399 - 404
  • [4] Linear and non-linear optical properties of amorphous Si
    Okumu, J
    Morgan, GJ
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 272 (01) : 67 - 70
  • [5] Linear and non-linear optical properties of GaAs nanowires
    Singh, Satyendra
    Srivastava, Pankaj
    [J]. APPLIED NANOSCIENCE, 2015, 5 (03) : 273 - 279
  • [6] Linear and non-linear optical properties of GaAs nanowires
    Satyendra Singh
    Pankaj Srivastava
    [J]. Applied Nanoscience, 2015, 5 : 273 - 279
  • [7] Linear and Non-Linear Optical Properties of Carbon Nanotubes
    Lefrant, S.
    Buisson, J. P.
    Mevellec, J. Y.
    Baibarac, M.
    Baltog, I.
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 522 : 472 - 479
  • [8] Non-linear emission properties of ZnO microcavities
    Guillet, T.
    Brimont, C.
    Valvin, P.
    Gil, B.
    Bretagnon, T.
    Medard, F.
    Mihailovic, M.
    Zuniga-Perez, J.
    Leroux, M.
    Semond, F.
    Bouchoule, S.
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 5, 2012, 9 (05): : 1225 - 1229
  • [9] Non-linear optical properties of arylfuranylpropenones
    Holla, BS
    Veerendra, B
    Indira, J
    [J]. JOURNAL OF CRYSTAL GROWTH, 2003, 252 (1-3) : 308 - 310
  • [10] EFFECTS OF DOPANTS DISTRIBUTION ON THE NON-LINEAR PROPERTIES OF A ZNO-BASED NON-LINEAR RESISTOR
    ASOKAN, T
    [J]. BRITISH CERAMIC TRANSACTIONS AND JOURNAL, 1987, 86 (06): : 187 - 189