Combinatorial proofs of a kind of binomial and q-binomial coefficient identities

被引:0
|
作者
Guo, Victor J. W. [1 ]
Zhang, Jing [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give combinatorial proofs of some binomial and q-binomial identities in the literature, such as (k=-infinity)Sigma(infinity(-1)kq(9k2+3k)/2) [n+3k 2n] = (1 + q(n)) (k=1)Pi(n-1) (1+ q(K) + q(2k)) (n >= 1), k=-infinity and (k=0)Sigma(infinity) ((3n)(2k)) (-3)(k) = (-8)(n). Two related conjectures are proposed at the end of this paper.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 50 条
  • [1] Combinatorial proofs of two q-binomial coefficient identities
    Liu, Ji-cai
    Zhao, Yuan-yuan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (04): : 381 - 386
  • [2] Hybrid Proofs of the q-Binomial Theorem and other identities
    Eichhorn, Dennis
    Mc Laughlin, James
    Sills, Andrew V.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [3] Combinatorial proof of a curious q-binomial coefficient identity
    Guo, Victor J. W.
    Zeng, Jiang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [4] AN EXPANSION OF THE q-BINOMIAL IDENTITIES WITH APPLICATIONS
    Wang, Mingjin
    UTILITAS MATHEMATICA, 2012, 87 : 79 - 91
  • [5] A kind of identities for generalized q-harmonic numbers and reciprocals of q-binomial coefficients
    Yang, Jizhen
    Wang, Yunpeng
    ARS COMBINATORIA, 2015, 118 : 73 - 85
  • [6] Some identities from the q-binomial transform
    Wang, Weiping
    Liu, Hongmei
    UTILITAS MATHEMATICA, 2012, 88 : 91 - 106
  • [7] An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q, t)-log concavity
    Dousse, Jehanne
    Kim, Byungchan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 158 : 228 - 253
  • [8] Quiver Mutation Sequences and q-Binomial Identities
    Kato, Akishi
    Mizuno, Yuma
    Terashima, Yuji
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (23) : 7335 - 7358
  • [9] A combinatorial proof of strict unimodality for q-binomial coefficients
    Dhand, Vivek
    DISCRETE MATHEMATICS, 2014, 335 : 20 - 24
  • [10] THE q-BINOMIAL THEOREM AND ROGERS-RAMANUJAN IDENTITIES
    Chu, Wenchang
    Zhang, Wenlong
    UTILITAS MATHEMATICA, 2011, 84 : 173 - 188