Developing a spectral disease index for myrtle rust (Austropuccinia psidii)

被引:18
|
作者
Heim, R. H. J. [1 ,2 ,3 ]
Wright, I. J. [1 ]
Allen, A. P. [1 ]
Geedicke, I. [1 ,2 ,3 ]
Oldeland, J. [2 ,3 ]
机构
[1] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia
[2] Univ Hamburg, Dept Biol, Bioctr Klein Flottbek, D-22609 Hamburg, Germany
[3] Univ Hamburg, Bot Garden, D-22609 Hamburg, Germany
关键词
hyperspectral; Myrtaceae; phytopathometry; plant disease detection; rust fungus; spectral vegetation index; PUCCINIA-PSIDII; PRECISION AGRICULTURE; VEGETATION INDEXES; PLANT; LEAVES; FUNGI;
D O I
10.1111/ppa.12996
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Since 2010 Australian ecosystems and managed landscapes have been severely threatened by the invasive fungal pathogen Austropuccinia psidii. Detecting and monitoring disease outbreaks is currently only possible by human assessors, which is slow and labour intensive. Over the last 25 years, spectral vegetation indices (SVIs) have been designed to assess variation in biochemical or biophysical traits of vegetation. However, diagnosis of individual diseases based on classical SVIs is currently not possible because they lack disease specificity. Here, a novel spectral disease index (SDI), the lemon myrtle-myrtle rust index (LMMR), has been developed. The index was designed from hyperspectral leaf-clip data collected at a lemon myrtle plantation in New South Wales, Australia. A total of 236 fungicide-treated (disease free) and 228 untreated (diseased) lemon myrtle leaves were sampled and a random forest classifier was used to show that the LMMR discriminates those classes with an overall accuracy of 90%. Compared to three classical SVIs (PRI, MCARI, NBNDVI), commonly applied for stress detection, the LMMR clearly improved classification accuracies (58%, 67%, 60%, respectively). If the LMMR can be validated on independent datasets from similar and different host species, it could enable land managers to reduce disease impact by earlier control. There might also be potential to collect useful data for epidemiology models. Calculating the LMMR based on hyperspectral data collected from aerial platforms (e.g. drones) would allow for rapid and high-capacity screening for disease outbreaks.
引用
收藏
页码:738 / 745
页数:8
相关论文
共 50 条
  • [1] The risk to Myrtaceae of Austropuccinia psidii, myrtle rust, in Mexico
    Esperon-Rodriguez, M.
    Baumgartner, J. B.
    Beaumont, L. J.
    Berthon, K.
    Carnegie, A. J.
    Alfonzetti, M. A.
    Barradas, V. L.
    Leishman, M.
    [J]. FOREST PATHOLOGY, 2018, 48 (04)
  • [2] Multispectral, Aerial Disease Detection for Myrtle Rust (Austropuccinia psidii) on a Lemon Myrtle Plantation
    Heim, Rene H. J.
    Wright, Ian J.
    Scarth, Peter
    Carnegie, Angus J.
    Taylor, Dominique
    Oldeland, Jens
    [J]. DRONES, 2019, 3 (01) : 1 - 14
  • [3] Detecting myrtle rust (Austropuccinia psidii) on lemon myrtle trees using spectral signatures and machine learning
    Heim, R. H. J.
    Wright, I. J.
    Chang, H. -C.
    Carnegie, A. J.
    Pegg, G. S.
    Lancaster, E. K.
    Falster, D. S.
    Oldeland, J.
    [J]. PLANT PATHOLOGY, 2018, 67 (05) : 1114 - 1121
  • [4] Effect of Austropuccinia psidii inoculum concentration on myrtle rust disease incidence and severity
    K. B. Ireland
    G. S. Pegg
    [J]. Australasian Plant Pathology, 2020, 49 : 239 - 243
  • [5] Effect of Austropuccinia psidii inoculum concentration on myrtle rust disease incidence and severity
    Ireland, K. B.
    Pegg, G. S.
    [J]. AUSTRALASIAN PLANT PATHOLOGY, 2020, 49 (03) : 239 - 243
  • [6] Austropuccinia licaniae, first congeneric with the myrtle rust pathogen A. psidii
    Ebinghaus, Malte
    Gasparotto, Luadir
    Martins, Joao M. T.
    Dos Santos, Maria D. M.
    Tessman, Dauri J.
    Barros-Cordeiro, Karine B.
    Pinho, Danilo B.
    Dianese, Jose C.
    [J]. MYCOLOGIA, 2024, 116 (03) : 418 - 430
  • [7] First Report of Myrtle Rust Caused by Austropuccinia psidii in Campomanesia guazumifslia in Brazil
    Bernardi, Caliandra
    Rey, Maristela dos Santos
    Wagner Junior, Americo
    Lima, Nelson Bernardi
    Biz, Diogo Rovaris
    Da Rosa, Viviane
    Perboni, Anelise Tessari
    Conceicao, Paulo Cesar
    [J]. PLANT DISEASE, 2023, 107 (08)
  • [8] First Report of Myrtle Rust Caused by Austropuccinia psidii on Eugenia myrcianthes in Brazil
    Bernardi, Caliandra
    Rey, Maristela Santos
    Wagner Jr, Americo
    Lima, Nelson Bernardi
    Biz, Diogo Rovaris
    da Rosa, Viviane
    [J]. PLANT DISEASE, 2023, 107 (07) : 2226 - 2226
  • [9] The pandemic strain of Austropuccinia psidii causes myrtle rust in New Zealand and Singapore
    du Plessis, E.
    Granados, G. M.
    Barnes, I.
    Ho, W. H.
    Alexander, B. J. R.
    Roux, J.
    McTaggart, A. R.
    [J]. AUSTRALASIAN PLANT PATHOLOGY, 2019, 48 (03) : 253 - 256
  • [10] The pandemic strain of Austropuccinia psidii causes myrtle rust in New Zealand and Singapore
    E. du Plessis
    G. M. Granados
    I. Barnes
    W. H. Ho
    B. J. R. Alexander
    J. Roux
    A. R. McTaggart
    [J]. Australasian Plant Pathology, 2019, 48 : 253 - 256