Unital Positive Maps and Quantum States

被引:4
|
作者
Asorey, M. [1 ]
Kossakowski, A. [2 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis, E-50009 Zaragoza, Spain
[2] Nicholas Copernicus Univ, Inst Phys, PL-87100 Torun, Poland
来源
OPEN SYSTEMS & INFORMATION DYNAMICS | 2008年 / 15卷 / 02期
关键词
D O I
10.1142/S1230161208000110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the structure of the subset of states generated by unital completely positive quantum maps. A witness certifying that a state does not belong to the subset generated by a given map is constructed. We analyse the representations of positive maps and their relation to quantum Perron-Frobenius theory.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 50 条
  • [1] Peripherally automorphic unital completely positive maps
    Bhat, B. V. Rajarama
    Kar, Samir
    Talwar, Bharat
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 678 : 191 - 205
  • [2] Extremal Unital Completely Positive Maps and Their Symmetries
    Mohari, Anilesh
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (07) : 1739 - 1765
  • [3] Extremal Unital Completely Positive Maps and Their Symmetries
    Anilesh Mohari
    Complex Analysis and Operator Theory, 2018, 12 : 1739 - 1765
  • [4] WHICH STATES CAN BE REACHED FROM A GIVEN STATE BY UNITAL COMPLETELY POSITIVE MAPS?
    MAGAJNA, B. O. J. A. N.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2022, 65 (03) : 632 - 651
  • [5] Ergodic decomposition in the space of unital completely positive maps
    Bhattacharya, Angshuman
    Kulkarni, Chaitanya J.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2024,
  • [6] Geometry of quantum states: New construction of positive maps
    Chruscinski, Dariusz
    Kossakowski, Andrzej
    PHYSICS LETTERS A, 2009, 373 (27-28) : 2301 - 2305
  • [7] Generalized orthogonal measures on the space of unital completely positive maps
    Bhattacharya, Angshuman
    Kulkarni, Chaitanya J.
    FORUM MATHEMATICUM, 2024, 36 (06) : 1483 - 1497
  • [8] Counterexamples to the extendibility of positive unital norm-one maps
    Chiribella, Giulio
    Davidson, Kenneth R.
    Paulsen, Vern I.
    Rahaman, Mizanur
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 663 : 102 - 115
  • [9] ON THE GRUSS INEQUALITY FOR UNITAL 2-POSITIVE LINEAR MAPS
    Balasubramanian, Sriram
    OPERATORS AND MATRICES, 2016, 10 (03): : 643 - 649
  • [10] A measure of non-Markovianity for unital quantum dynamical maps
    S. Haseli
    S. Salimi
    A. S. Khorashad
    Quantum Information Processing, 2015, 14 : 3581 - 3594