Bellerophontes: an RNA-Seq data analysis framework for chimeric transcripts discovery based on accurate fusion model

被引:23
|
作者
Abate, Francesco [1 ]
Acquaviva, Andrea [1 ]
Paciello, Giulia [1 ]
Foti, Carmelo [1 ]
Ficarra, Elisa [1 ]
Ferrarini, Alberto [2 ]
Delledonne, Massimo [2 ]
Iacobucci, Ilaria [3 ]
Soverini, Simona [3 ]
Martinelli, Giovanni [3 ]
Macii, Enrico [1 ]
机构
[1] Politecn Torino, Dept Control & Comp Engn, I-10129 Turin, Italy
[2] Univ Verona, Dept Biotechnol, I-37134 Verona, Italy
[3] Univ Bologna, Inst Med Oncol & Hematol, I-40138 Bologna, Italy
关键词
SPLICE JUNCTIONS; GENE FUSIONS; CANCER;
D O I
10.1093/bioinformatics/bts334
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Next-generation sequencing technology allows the detection of genomic structural variations, novel genes and transcript isoforms from the analysis of high-throughput data. In this work, we propose a new framework for the detection of fusion transcripts through short paired-end reads which integrates splicing-driven alignment and abundance estimation analysis, producing a more accurate set of reads supporting the junction discovery and taking into account also not annotated transcripts. Bellerophontes performs a selection of putative junctions on the basis of a match to an accurate gene fusion model. Results: We report the fusion genes discovered by the proposed framework on experimentally validated biological samples of chronic myelogenous leukemia (CML) and on public NCBI datasets, for which Bellerophontes is able to detect the exact junction sequence. With respect to state-of-art approaches, Bellerophontes detects the same experimentally validated fusions, however, it is more selective on the total number of detected fusions and provides a more accurate set of spanning reads supporting the junctions. We finally report the fusions involving non-annotated transcripts found in CML samples.
引用
收藏
页码:2114 / 2121
页数:8
相关论文
共 50 条
  • [1] CLIFinder: identification of LINE-1 chimeric transcripts in RNA-seq data
    Pinson, Marie-Elisa
    Pogorelcnik, Romain
    Court, Franck
    Arnaud, Philippe
    Vaurs-Barriere, Catherine
    BIOINFORMATICS, 2018, 34 (04) : 688 - 690
  • [2] ChiTaRS 2.1-an improved database of the chimeric transcripts and RNA-seq data with novel sense-antisense chimeric RNA transcripts
    Frenkel-Morgenstern, Milana
    Gorohovski, Alessandro
    Vucenovic, Dunja
    Maestre, Lorena
    Valencia, Alfonso
    NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D68 - D75
  • [3] Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript
    Benelli, Matteo
    Pescucci, Chiara
    Marseglia, Giuseppina
    Severgnini, Marco
    Torricelli, Francesca
    Magi, Alberto
    BIOINFORMATICS, 2012, 28 (24) : 3232 - 3239
  • [4] Detection of Fusion Transcripts in Hematologic Malignancies by RNA-Seq
    Szankasi, P.
    Paxton, C. N.
    Shen, W.
    Rindler, P. M.
    O'Fallon, A.
    Schumacher, J. A.
    Xu, X.
    Kelley, T. W.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2017, 19 (06): : 955 - 956
  • [5] Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data
    Shailesh Kumar
    Angie Duy Vo
    Fujun Qin
    Hui Li
    Scientific Reports, 6
  • [6] Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data
    Kumar, Shailesh
    Vo, Angie Duy
    Qin, Fujun
    Li, Hui
    SCIENTIFIC REPORTS, 2016, 6
  • [7] deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data
    McPherson, Andrew
    Hormozdiari, Fereydoun
    Zayed, Abdalnasser
    Giuliany, Ryan
    Ha, Gavin
    Sun, Mark G. F.
    Griffith, Malachi
    Moussavi, Alireza Heravi
    Senz, Janine
    Melnyk, Nataliya
    Pacheco, Marina
    Marra, Marco A.
    Hirst, Martin
    Nielsen, Torsten O.
    Sahinalp, S. Cenk
    Huntsman, David
    Shah, Sohrab P.
    PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (05)
  • [8] RNA-Seq based discovery and reconstruction of unannotated transcripts in partially annotated genomes
    Mangul, Serghei
    Caciula, Adrian
    Mandoiu, Ion
    Zelikovsky, Alex
    2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, 2011, : 118 - 123
  • [9] A NOVEL ANALYSIS FLOW FOR FUSED TRANSCRIPTS DISCOVERY FROM PAIRED-END RNA-SEQ DATA
    Abate, F.
    Paciello, G.
    Acquaviva, A.
    Ficarra, E.
    Ferrarini, A.
    Delledonne, M.
    Macii, Ande.
    BIOINFORMATICS: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOINFORMATICS MODELS, METHODS AND ALGORITHMS, 2012, : 331 - 334
  • [10] Dynamic Model for RNA-seq Data Analysis
    Li, Lerong
    Xiong, Momiao
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015