Moduli spaces of toric manifolds

被引:10
|
作者
Pelayo, A. [1 ,2 ]
Pires, A. R. [3 ]
Ratiu, T. S. [4 ,5 ]
Sabatini, S. [4 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[4] Ecole Polytech Fed Lausanne, Sect Math, Stn 8, CH-1015 Lausanne, Switzerland
[5] Ecole Polytech Fed Lausanne, Bernoulli Ctr, Stn 8, CH-1015 Lausanne, Switzerland
关键词
Toric manifold; Delzant polytope; Moduli space; Metric space; CONVEXITY;
D O I
10.1007/s10711-013-9858-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance is related to the Duistermaat-Heckman measure and the Hausdorff metric. While the moduli space, its topology and metric, may be constructed in any dimension, the tools we use in the proofs are four-dimensional, and hence so is our main result.
引用
收藏
页码:323 / 341
页数:19
相关论文
共 50 条
  • [1] Moduli spaces of toric manifolds
    Á. Pelayo
    A. R. Pires
    T. S. Ratiu
    S. Sabatini
    Geometriae Dedicata, 2014, 169 : 323 - 341
  • [2] Moduli spaces of instantons on toric noncommutative manifolds
    Brain, Simon
    Landi, Giovanni
    van Suijlekom, Walter D.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 17 (05) : 1129 - 1193
  • [3] On the density function on moduli spaces of toric 4-manifolds
    Figalli, Alessio
    Pelayo, Alvaro
    ADVANCES IN GEOMETRY, 2016, 16 (03) : 291 - 300
  • [4] Moduli spaces of manifolds
    Galatius, Soren
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 1197 - 1217
  • [5] Monoids of moduli spaces of manifolds
    Galatius, Soren
    Randal-Williams, Oscar
    GEOMETRY & TOPOLOGY, 2010, 14 (03): : 1243 - 1302
  • [6] Toric Orbit Spaces Which are Manifolds
    Ayzenberg A.
    Gorchakov V.
    Arnold Mathematical Journal, 2024, 10 (3) : 387 - 408
  • [7] A Note on Toric Varieties Associated with Moduli Spaces
    Uren, James J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (03): : 561 - 565
  • [8] On the Negativity of Moduli Spaces for Polarized Manifolds
    Kang Zuo
    Vietnam Journal of Mathematics, 2021, 49 : 527 - 546
  • [10] On the Negativity of Moduli Spaces for Polarized Manifolds
    Zuo, Kang
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (02) : 527 - 546