G-subsets of an invariant subset Q*(√k2m) of Q(√m)\Q under the Modular Group Action

被引:0
|
作者
Malik, M. Aslam [1 ]
Zafar, M. Asim [1 ]
机构
[1] Univ Punjab, Dept Math, Lahore 54590, Pakistan
关键词
Real quadratic irrational number; Legendre symbol; Linear-fractional transformations; NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
PSL2(Z) is the well known modular group with the presentation < x, y: x(2) = y(3) = 1 > where x : C' -> C' and y : C' -> C' are the Mobius transformations defined by: x(z) = -1/z, y(z) = z-1/z. Let n = k(2)m, where m is a square free positive integer and k is any non zero integer. Then Q*(root n) = {a+root n/c : a, c not equal 0, b = a(2)-n/c is an element of Z and (a, b, c) = 1} is a G-subset of Q(root m)\Q. In this paper we are interested in finding the cardinality of the set E(p)r, r >= 1, consisting of all classes [a, b,c](mod p(r)) of the elements of Q*(root n). Also we determine, for each non-square n, the all G-subsets of Q*(root n) under the modular group action by using classes [a, b, c](mod n).
引用
收藏
页码:377 / 387
页数:11
相关论文
共 50 条
  • [1] On ambiguous numbers of an invariant subset Q*(√k2m) of Q(√m) under the action of the modular group PSL (2, Z)
    Husnine, SM
    Malik, MA
    Majeed, A
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (04) : 401 - 412
  • [2] ORBITS OF Q*(√k2m) UNDER THE ACTION OF THE MODULAR GROUP PSL(2,Z)
    Malik, M. Aslam
    Riaz, Muhammad
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2012, 74 (04): : 109 - 116
  • [3] G-Subsets and G-Orbits of Q*(root n) Under Action of the Modular Group
    Malik, M. Aslam
    Riaz, M.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2011, 43 : 75 - 84
  • [4] INTRANSITIVE ACTION OF THE GROUP PSL(2, Z) ON A SUBSET Q*(root/k(2)m) OF Q(root m)
    Malik, M. Aslam
    Husnine, S. M.
    Majeed, Abdul
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2005, 37 : 31 - 38
  • [5] On sets of type (m,h)(2) in PG (3,q) with m <= q
    Napolitano, Vito
    NOTE DI MATEMATICA, 2015, 35 (01): : 109 - 123
  • [6] CYCLIC REPRESENTATION OF QUANTUM GROUP GL(2)Q AT Q(P) = 1 FROM THE REGULAR REPRESENTATION OF M(2)Q
    FU, HC
    GE, ML
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1992, 18 (02) : 245 - 248
  • [7] A Characterization of PSL(3. q) for q=2~m
    A.IRANMANESH
    S.H.ALAVI
    B.KHOSRAVI
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (03) : 463 - 472
  • [8] A characterization of PSL(3, q) for q=2m
    Iranmanesh, A
    Alavi, SH
    Khosravi, B
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (03) : 463 - 472
  • [9] A Characterization of PSL(3, q) for q=2m
    A. Iranmanesh
    S. H. Alavi
    B. Khosravi
    Acta Mathematica Sinica, 2002, 18 : 463 - 472
  • [10] A note on the action of the Hecke group H(2) on subsets of the form Q*(√n)
    Cimpoeas, Mircea
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (06)