Recognition oriented facial image quality assessment via deep convolutional neural network

被引:16
|
作者
Zhuang, Ning [1 ]
Zhang, Qiang [1 ]
Pan, Cenhui [1 ]
Ni, Bingbing [1 ]
Xu, Yi [1 ]
Yang, Xiaokang [1 ]
Zhang, Wenjun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
关键词
Face image quality; Face selection; Face recognition; Convolutional network; FACE-RECOGNITION; NORMALIZATION; DATABASE;
D O I
10.1016/j.neucom.2019.04.057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quality of facial images significantly impacts the performance of face recognition algorithms. Being able to predict "which facial image is good for recognition" is of great importance for real application scenarios, where a sequence of facial images are always presented and one should select the image frame with "best quality" for the subsequent matching and recognition task. To this end, we introduce a novel facial image quality automatic assessment framework directly targeting at "selecting better face image for better face recognition". For such as purpose, a deep convolutional neural network (DCNN) is trained to output a general facial quality metric which comprehensively considers various quality factors including brightness, contrast, blurriness, occlusion, and pose etc. Based on this trained facial quality metric network, we are able to sort the input face images accordingly and "select" good face images for recognition. Our method is comprehensively evaluated on Color FERET and KinectFace face datasets. Results show that the proposed facial image quality metric network works end-to-end and it well distinguishes "good" images from "bad" ones, which is highly correlated with the final recognition performance. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
  • [1] Recognition Oriented Facial Image Quality Assessment via Deep Convolutional Neural Network
    Pan, Cenhui
    Ni, Bingbing
    Xu, Yi
    Yang, Xiaokang
    8TH INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA COMPUTING AND SERVICE (ICIMCS2016), 2016, : 160 - 163
  • [2] DISTORTION RECOGNITION FOR IMAGE QUALITY ASSESSMENT WITH CONVOLUTIONAL NEURAL NETWORK
    Wang, Hanli
    Zuo, Lingxuan
    Fu, Jie
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [3] Stereoscopic image quality assessment by deep convolutional neural network
    Fang, Yuming
    Yan, Jiebin
    Liu, Xuelin
    Wang, Jiheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 58 : 400 - 406
  • [4] Blind Image Quality Assessment Via Convolutional Neural Network
    Wu, Meiyin
    Chen, Li
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2016, : 221 - 224
  • [5] Deep Convolutional Neural Network for Facial Expression Recognition
    Zhai, Yikui
    Liu, Jian
    Zeng, Junying
    Piuri, Vincenzo
    Scotti, Fabio
    Ying, Zilu
    Xu, Ying
    Gan, Junying
    IMAGE AND GRAPHICS (ICIG 2017), PT I, 2017, 10666 : 211 - 223
  • [6] Tongue image quality assessment based on a deep convolutional neural network
    Jiang, Tao
    Hu, Xiao-juan
    Yao, Xing-hua
    Tu, Li-ping
    Huang, Jing-bin
    Ma, Xu-xiang
    Cui, Ji
    Wu, Qing-feng
    Xu, Jia-tuo
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [7] Tongue image quality assessment based on a deep convolutional neural network
    Tao Jiang
    Xiao-juan Hu
    Xing-hua Yao
    Li-ping Tu
    Jing-bin Huang
    Xu-xiang Ma
    Ji Cui
    Qing-feng Wu
    Jia-tuo Xu
    BMC Medical Informatics and Decision Making, 21
  • [8] SCREEN CONTENT IMAGE QUALITY ASSESSMENT VIA CONVOLUTIONAL NEURAL NETWORK
    Zuo, Lingxuan
    Wang, Hanli
    Fu, Jie
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2082 - 2086
  • [9] Facial Emotion Recognition Using Deep Convolutional Neural Network
    Pranav, E.
    Kamal, Suraj
    Chandran, Satheesh C.
    Supriya, M. H.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 317 - 320
  • [10] Deep convolutional neural network architecture for facial emotion recognition
    Pruthviraja, Dayananda
    Kumar, Ujjwal Mohan
    Parameswaran, Sunil
    Chowdary, Vemulapalli Guna
    Bharadwaj, Varun
    PEERJ COMPUTER SCIENCE, 2024, 10 : 1 - 20