Multiplicative group law on the folium of Descartes

被引:0
|
作者
Pricopie, Steluta [1 ]
Udriste, Constantin [1 ]
机构
[1] Univ Politehn Bucuresti, Fac Sci Appl, Dept Math Informat, RO-060042 Bucharest, Romania
来源
BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS | 2013年 / 18卷 / 01期
关键词
group of points on Descartes folium; algebraic groups; Legendre symbol; algebraic computation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The folium of Descartes is still studied and understood today. Not only did it provide for the proof of some properties connected to Fermat's Last Theorem, or as Hessian curve associated to an elliptic curve, but it also has a very interesting property over it: a multiplicative group law. While for the elliptic curves, the addition operation is compatible with their geometry (additive group), for the folium of Descartes, the multiplication operation is compatible with its geometry (multiplicative group). The original results in this paper include: points at infinity described by the Legendre symbol, a group law on folium of Descartes, the fundamental isomorphism and adequate algorithms, algorithms for algebraic computation.
引用
收藏
页码:54 / 70
页数:17
相关论文
共 50 条
  • [1] Fermat and the quadrature of the folium of descartes
    Paradís, J
    Pla, J
    Viader, P
    AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (03): : 216 - 229
  • [2] Descartes Group
    Sarkozy, Nicolas
    CRITIQUE, 2010, 66 (757-58) : 564 - 566
  • [3] DESCARTES LAW OF RECIPROCAL INNERVATION
    CIUFFREDA, KJ
    STARK, L
    AMERICAN JOURNAL OF OPTOMETRY AND PHYSIOLOGICAL OPTICS, 1975, 52 (10): : 663 - 673
  • [4] DESCARTES, NEWTON, AND SNELLS LAW
    JOYCE, WB
    JOYCE, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (01) : 1 - 7
  • [5] MULTIPLICATIVE GROUP ZP
    FOSTER, LL
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (02): : 139 - 139
  • [6] ENGELIANNESS OF MULTIPLICATIVE GROUP OF GROUP-ALGEBRAS
    BOVDI, AA
    KHRIPTA, II
    DOKLADY AKADEMII NAUK SSSR, 1990, 314 (01): : 18 - 20
  • [7] ORTHOGONALITIES IN THE MULTIPLICATIVE GROUP Q(+)
    Grinshpon, S. Ya
    Fukson, S. L.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2015, (38): : 18 - 26
  • [8] THE MULTIPLICATIVE GROUP OF A DIVISION RING
    HUZURBAZAR, MS
    DOKLADY AKADEMII NAUK SSSR, 1960, 131 (06): : 1268 - 1271
  • [9] A LOCAL SYMBOL FOR A MULTIPLICATIVE GROUP
    DELIGNE, P
    PUBLICATIONS MATHEMATIQUES, 1991, (73): : 147 - 181
  • [10] MULTIPLICATIVE GROUP OF CLASSICAL COHOMOLOGY
    SEGAL, G
    QUARTERLY JOURNAL OF MATHEMATICS, 1975, 26 (103): : 289 - 293