Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations

被引:10
|
作者
Kostakis, I [1 ,8 ]
Rottgers, R. [2 ]
Orkney, A. [3 ]
Bouman, H. A. [3 ]
Porter, M. [4 ]
Cottier, F. [4 ,5 ]
Berge, J. [5 ,6 ,7 ]
McKee, D. [1 ,5 ]
机构
[1] Univ Strathclyde, Phys Dept, Glasgow, Lanark, Scotland
[2] Helmholtz Zentrum Geesthacht, Remote Sensing Dept, Geesthacht, Germany
[3] Univ Oxford, Dept Earth Sci, Oxford, England
[4] Scottish Assoc Marine Sci, Oban, Argyll, Scotland
[5] UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, Tromso, Norway
[6] Univ Ctr Svalbard, Dept Arctic Biol, Longyearbyen, Norway
[7] Norwegian Univ Technol & Sci, NTNU AMOS Ctr Autonomous Marine Operat & Syst, Dept Biol, Trondheim, Norway
[8] Univ Portsmouth, CHMI, Buckingham Bldg,Lion Terrace, Portsmouth PO1 3HE, Hants, England
关键词
bio-optical model; Arctic Ocean; autonomous observations; ocean colour remote sensing; light availability; DISSOLVED ORGANIC-MATTER; OPTICAL BACKSCATTERING; PARTICULATE ABSORPTION; LIGHT-ABSORPTION; OCEANIC WATERS; CHLOROPHYLL-A; ICE; PHYTOPLANKTON; CDOM; REFLECTANCE;
D O I
10.1098/rsta.2019.0367
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A bio-optical model for the Barents Sea is determined from a set of in situ observations of inherent optical properties (IOPs) and associated biogeochemical analyses. The bio-optical model provides a pathway to convert commonly measured parameters from glider-borne sensors (CTD, optical triplet sensor-chlorophyll and CDOM fluorescence, backscattering coefficients) to bulk spectral IOPs (absorption, attenuation and backscattering). IOPs derived from glider observations are subsequently used to estimate remote sensing reflectance spectra that compare well with coincident satellite observations, providing independent validation of the general applicability of the bio-optical model. Various challenges in the generation of a robust bio-optical model involving dealing with partial and limited quantity datasets and the interpretation of data from the optical triplet sensor are discussed. Establishing this quantitative link between glider-borne and satellite-borne data sources is an important step in integrating these data streams and has wide applicability for current and future integrated autonomous observation systems. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea
    Orkney, A.
    Platt, T.
    Narayanaswamy, B. E.
    Kostakis, I
    Bouman, H. A.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2181):
  • [2] Satellite and in situ observations of the bio-optical signatures of two mesoscale eddies in the Sargasso Sea
    Siegel, D. A.
    Court, D. B.
    Menzies, D. W.
    Peterson, P.
    Maritorena, S.
    Nelson, N. B.
    [J]. DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2008, 55 (10-13) : 1218 - 1230
  • [3] Application of the ocean color data gathered by the SeaWiFs satellite scanner for estimating the bio-optical characteristics of waters in the Barents Sea
    Burenkov, VI
    Vedernikov, VI
    Ershova, SV
    Kopelevich, OV
    Sheberstov, SV
    [J]. OCEANOLOGY, 2001, 41 (04) : 461 - 468
  • [4] Bio-optical observations of the 2004 Labrador Sea phytoplankton bloom
    Strutton, Peter G.
    Martz, Todd R.
    DeGrandpre, Michael D.
    McGillis, Wade R.
    Drennan, William M.
    Boss, Emmanuel
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
  • [5] Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea
    Kaufman, Daniel E.
    Friedrichs, Marjorie A. M.
    Hemmings, John C. P.
    Smith, Walker O., Jr.
    [J]. BIOGEOSCIENCES, 2018, 15 (01) : 73 - 90
  • [6] Primary production calculations for sea ice from bio-optical observations in the Baltic Sea
    Mueller, Susann
    Vahatalo, Anssi V.
    Uusikivi, Jari
    Majaneva, Markus
    Majaneva, Sanna
    Autio, Riitta
    Rintala, Janne-Markus
    [J]. ELEMENTA-SCIENCE OF THE ANTHROPOCENE, 2016, 4
  • [7] A bio-optical model for integration into ecosystem models for the Ligurian Sea
    Bengil, Fethi
    Mckee, David
    Besiktepe, Sukru T.
    Calzado, Violeta Sanjuan
    Trees, Charles
    [J]. PROGRESS IN OCEANOGRAPHY, 2016, 149 : 1 - 15
  • [8] Bio-optical properties of the Labrador Sea
    Cota, GF
    Harrison, WG
    Platt, T
    Sathyendranath, S
    Stuart, V
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2003, 108 (C7)
  • [9] ASSIMILATION OF BIO-OPTICAL PROPERTIES INTO COUPLED PHYSICAL, BIO-OPTICAL COASTAL MODEL
    Shulman, Igor
    Frolov, Sergey
    Anderson, Stephanie
    Penta, Brad
    Gould, Rick
    Sakalaukus, Peter
    Ladner, Sherwin
    [J]. OCEAN SENSING AND MONITORING V, 2013, 8724
  • [10] Satellite Observations of the Coccolithophorid Bloom in the Barents Sea
    Burenkov, V. I.
    Kopelevich, O. V.
    Rat'kova, T. N.
    Sheberstov, S. V.
    [J]. OCEANOLOGY, 2011, 51 (05) : 766 - 774