REFINEMENTS OF THE OPERATOR JENSEN-MERCER INEQUALITY

被引:0
|
作者
Kian, Mohsen [1 ,2 ]
Moslehian, Mohammad Sal [3 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord 94531, Iran
[2] TMRG, Mashhad 91775, Iran
[3] Ferdowsi Univ Mashhad, CEAAS, Dept Pure Math, Mashhad 91775, Iran
来源
关键词
Jensen-Mercer inequality; Operator convex; Jensen inequality; Hermite-Hadamard inequality; Jointly operator convex; CONVEX-FUNCTIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hermite-Hadamard-Mercer type inequality is presented and then generalized to Hilbert space operators. It is shown that f M+m-Sigma(n)(i=1) x(i)A(i)) <= f(M)+f(m)-Sigma(n)(i=1)f(x(i))A(i), where f is a convex function on an interval [m,M] containing 0, x(i) is an element of [m, M], i=1,...,n, and A(i) are positive operators acting on a finite dimensional Hilbert space whose sum is equal to the identity operator.A Jensen-Mercer operator type inequality for separately operator convex functions is also presented
引用
收藏
页码:742 / 753
页数:12
相关论文
共 50 条
  • [1] ON A JENSEN-MERCER OPERATOR INEQUALITY
    Ivelic, S.
    Matkovic, A.
    Pecaric, J. E.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (01) : 19 - 28
  • [2] GENERALIZATION AND REFINEMENTS OF THE JENSEN-MERCER INEQUALITY WITH APPLICATIONS
    Khan, Asif R.
    Khan, Inam Ullah
    Ramji, Shahid Sultan Ali
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1341 - 1360
  • [3] A variant of the Jensen-Mercer operator inequality for superquadratic functions
    Baric, J.
    Matkovic, A.
    Pecaric, J.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (9-10) : 1230 - 1239
  • [4] New refinements of the Jensen-Mercer inequality associated to positive n-tuples
    Khan, M. Adil
    Pecaric, J.
    ARMENIAN JOURNAL OF MATHEMATICS, 2020, 12 (04): : 1 - 12
  • [5] ON BOUNDARY DOMINATION IN THE JENSEN-MERCER INEQUALITY
    Peric, Ivan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (04): : 983 - 1000
  • [6] Integral Jensen-Mercer and Related Inequalities for Signed Measures with Refinements
    Horvath, Laszlo
    MATHEMATICS, 2025, 13 (03)
  • [7] AN EXTENSION OF JENSEN-MERCER INEQUALITY WITH APPLICATIONS TO ENTROPY
    Sayyari, Yamin
    HONAM MATHEMATICAL JOURNAL, 2022, 44 (04): : 513 - 520
  • [8] REVERSE JENSEN-MERCER TYPE OPERATOR INEQUALITIES
    Anjidani, Ehsan
    Chancalvaiy, Mohammad Reza
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 87 - 99
  • [9] Jensen-Mercer Operator Inequalities Involving Superquadratic Functions
    Anjidani, E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [10] AN EXTENSION OF JENSEN-MERCER INEQUALITY FOR FUNCTIONS WITH NONDECREASING INCREMENTS
    Khan, Asif R.
    Khan, Inam Ullah
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (04): : 1 - 15