Coupling of the phase-field and CALPHAD methods for predicting multicomponent, solid-state phase transformations

被引:40
|
作者
Kitashima, Tomonori [1 ]
机构
[1] Natl Inst Mat Sci, High Temp Mat Ctr, Tsukuba, Ibaraki, Japan
关键词
computer simulation; phase-equilibria; solid-state transformation;
D O I
10.1080/14786430802243857
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of an effective microstructure design method for multicomponent alloys is of considerable importance for improving both the design of alloys and the design of processes for producing alloys with unique properties. The coupling of the phase-field method and the calculation of phase diagrams (CALPHAD) method can be used for predicting the evolution of microstructures in multicomponent alloys. Such predictions make use of CALPHAD thermodynamic information with the chemical free energy function in the phase-field method. This article reviews several of these coupling methods, focusing on solid-state phase transformations in multicomponent systems, such as phase separation and disordered or ordered phase precipitation from a matrix. When calculating disordered phase transformations, the Gibbs energy function derived from the CALPHAD database can be used directly in the phase-field method. On the other hand, when dealing with an order/disorder transition, the degrees of freedom of the element site fraction for an ordered phase in the CALPHAD method can be reduced using the Gibbs energy single formalism for constituent phases, by using a database that stores the Gibbs energy and chemical equilibrium conditions, or by obtaining the driving force calculated using the Thermo-Calc software. The current status and future directions for further development of these coupled methods are discussed.
引用
收藏
页码:1615 / 1637
页数:23
相关论文
共 50 条
  • [1] Phase-field simulation of solidification and solid-state transformations in multicomponent steels
    Boettger, Bernd
    Apel, Markus
    Eiken, Janin
    Schaffnit, Philippe
    Steinbach, Ingo
    STEEL RESEARCH INTERNATIONAL, 2008, 79 (08) : 608 - 616
  • [2] Phase-Field Modeling of Nucleation in Solid-State Phase Transformations
    Tae Wook Heo
    Long-Qing Chen
    JOM, 2014, 66 : 1520 - 1528
  • [3] Phase-Field Modeling of Nucleation in Solid-State Phase Transformations
    Heo, Tae Wook
    Chen, Long-Qing
    JOM, 2014, 66 (08) : 1520 - 1528
  • [4] Phase-field Modeling and Simulation of Solid-state Phase Transformations in Steels
    Yamanaka, Akinori
    ISIJ INTERNATIONAL, 2023, 63 (03) : 395 - 406
  • [5] Phase-field Modeling of Phase Transformations in Multicomponent Alloys: A Review
    Lahiri, Arka
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2022, 102 (01) : 39 - 57
  • [6] Phase-field Modeling of Phase Transformations in Multicomponent Alloys: A Review
    Arka Lahiri
    Journal of the Indian Institute of Science, 2022, 102 : 39 - 57
  • [7] Application of phase-field modeling in solid-state phase transformation of steels
    Shao-jie Lv
    Shui-ze Wang
    Gui-lin Wu
    Jun-heng Gao
    Xu-sheng Yang
    Hong-hui Wu
    Xin-ping Mao
    Journal of Iron and Steel Research International, 2022, 29 : 867 - 880
  • [8] Application of phase-field modeling in solid-state phase transformation of steels
    Lv, Shao-jie
    Wang, Shui-ze
    Wu, Gui-lin
    Gao, Jun-heng
    Yang, Xu-sheng
    Wu, Hong-hui
    Mao, Xin-ping
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2022, 29 (06) : 867 - 880
  • [9] A phase-field model for solid-solid phase transformations
    Kim, JH
    Cha, PR
    Yeon, DH
    Yoon, JK
    PRICM 4: FORTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, VOLS I AND II, 2001, : 2455 - 2458
  • [10] A sublattice phase-field model for direct CALPHAD database coupling
    Schwen, D.
    Jiang, C.
    Aagesen, L. K.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 195