Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI

被引:335
|
作者
Magnin, Benoit [1 ,2 ,3 ,4 ]
Mesrob, Lilia [2 ,3 ,4 ]
Kinkingnehun, Serge [2 ,3 ,4 ,5 ]
Pelegrini-Issac, Melanie [1 ,3 ,4 ]
Colliot, Olivier [4 ,6 ]
Sarazin, Marie [2 ,3 ,4 ,7 ]
Dubois, Bruno [2 ,3 ,4 ,7 ]
Lehericy, Stephane [2 ,3 ,4 ,8 ,9 ]
Benali, Habib [1 ,3 ,4 ,10 ]
机构
[1] INSERM, UMR S 678, F-75013 Paris, France
[2] INSERM, UMR S 610, F-75013 Paris, France
[3] Univ Paris 06, UMPC, Fac Med Pitie Salpetriere, F-75013 Paris, France
[4] IFR 49, F-91191 Gif Sur Yvette, France
[5] Eye BRAIN, F-94400 Vitry Sur Seine, France
[6] CNRS, UPR LENA 640, F-75013 Paris, France
[7] Hop La Pitie Salpetriere, Dept Neurol, F-75013 Paris, France
[8] Univ Paris 06, UMPC, Ctr NeuroImaging Res CENIR, F-75013 Paris, France
[9] Hop La Pitie Salpetriere, Dept Neuroradiol, F-75013 Paris, France
[10] Univ Montreal, UNF CRIUGM, Montreal, PQ H3W 1W5, Canada
关键词
Alzheimer's disease; Diagnosis; Magnetic resonance image; Support vector machine; Sensitivity; Specificity; MILD COGNITIVE IMPAIRMENT; DIMENSIONAL PATTERN-CLASSIFICATION; ENTORHINAL CORTEX; LEWY BODIES; CEREBRAL ATROPHY; EARLY-DIAGNOSIS; DEMENTIA; HIPPOCAMPAL; AD; PERFORMANCE;
D O I
10.1007/s00234-008-0463-x
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer's disease (AD) and elderly control subjects. We studied 16 patients with AD [mean age +/- standard deviation (SD) = 74.1 +/- 5.2 years, mini-mental score examination (MMSE) = 23.1 +/- 2.9] and 22 elderly controls (72.3 +/- 5.0 years, MMSE = 28.5 +/- 1.3). Three-dimensional T1-weighted MR images of each subject were automatically parcellated into regions of interest (ROIs). Based upon the characteristics of gray matter extracted from each ROI, we used an SVM algorithm to classify the subjects and statistical procedures based on bootstrap resampling to ensure the robustness of the results. We obtained 94.5% mean correct classification for AD and control subjects (mean specificity, 96.6%; mean sensitivity, 91.5%). Our method has the potential in distinguishing patients with AD from elderly controls and therefore may help in the early diagnosis of AD.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 50 条
  • [1] Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI
    Benoît Magnin
    Lilia Mesrob
    Serge Kinkingnéhun
    Mélanie Pélégrini-Issac
    Olivier Colliot
    Marie Sarazin
    Bruno Dubois
    Stéphane Lehéricy
    Habib Benali
    Neuroradiology, 2009, 51 : 73 - 83
  • [2] Predictive Models Based on Support Vector Machines: Whole-Brain versus Regional Analysis of Structural MRI in the Alzheimer's Disease
    Retico, Alessandra
    Bosco, Paolo
    Cerello, Piergiorgio
    Fiorina, Elisa
    Chincarini, Andrea
    Fantacci, Maria Evelina
    JOURNAL OF NEUROIMAGING, 2015, 25 (04) : 552 - 563
  • [3] Classification of Alzheimer’s disease based on brain MRI and machine learning
    Zhao Fan
    Fanyu Xu
    Xuedan Qi
    Cai Li
    Lili Yao
    Neural Computing and Applications, 2020, 32 : 1927 - 1936
  • [4] Classification of Alzheimer's disease based on brain MRI and machine learning
    Fan, Zhao
    Xu, Fanyu
    Qi, Xuedan
    Li, Cai
    Yao, Lili
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (07): : 1927 - 1936
  • [5] Support Vector Machine-based Spontaneous Intracranial Hypotension Detection on Brain MRI
    Arnold, Philipp G.
    Kaya, Emre
    Reisert, Marco
    Luetzen, Niklas
    Dovi-Akue, Philippe
    Fung, Christian
    Beck, Jurgen
    Urbach, Horst
    CLINICAL NEURORADIOLOGY, 2022, 32 (01) : 225 - 230
  • [6] Support Vector Machine-based Spontaneous Intracranial Hypotension Detection on Brain MRI
    Philipp G. Arnold
    Emre Kaya
    Marco Reisert
    Niklas Lützen
    Philippe Dovi-Akué
    Christian Fung
    Jürgen Beck
    Horst Urbach
    Clinical Neuroradiology, 2022, 32 : 225 - 230
  • [7] Support vector machine-based classification of neuroimages in Alzheimer's disease: direct comparison of FDG-PET, rCBF-SPECT and MRI data acquired from the same individuals
    Ferreira, Luiz K.
    Rondina, Jane M.
    Kubo, Rodrigo
    Ono, Carla R.
    Leite, Claudia C.
    Smid, Jerusa
    Bottino, Cassio
    Nitrini, Ricardo
    Busatto, Geraldo F.
    Duran, Fabio L.
    Buchpiguel, Carlos A.
    REVISTA BRASILEIRA DE PSIQUIATRIA, 2018, 40 (02) : 181 - 191
  • [8] A Support Vector Machine-Based Genetic AlgorithmMethod for Gas Classification
    Wang, Kun
    Ye, Wenbin
    Zhao, Xiaojin
    Pan, Xiaofang
    2017 2ND INTERNATIONAL CONFERENCE ON FRONTIERS OF SENSORS TECHNOLOGIES (ICFST), 2017, : 363 - 366
  • [9] Support Vector Machine-Based Classification Scheme of Maize Crop
    Athani, Suhas S.
    Tejeshwar, C. H.
    2017 7TH IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2017, : 84 - 88
  • [10] Support Vector Machine Classification of Obsessive-Compulsive Disorder Based on Whole-Brain Volumetry and Diffusion Tensor Imaging
    Zhou, Cong
    Cheng, Yuqi
    Ping, Liangliang
    Xu, Jian
    Shen, Zonglin
    Jiang, Linling
    Shi, Li
    Yang, Shuran
    Lu, Yi
    Xu, Xiufeng
    FRONTIERS IN PSYCHIATRY, 2018, 9