Adaptive Speech Dereverberation Using Constrained Sparse Multichannel Linear Prediction

被引:27
|
作者
Jukic, Ante [1 ]
van Waterschoot, Toon [2 ]
Doclo, Simon [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Dept Med Phys & Acoust, D-26111 Oldenburg, Germany
[2] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Leuven, Belgium
关键词
Adaptive filtering; constrained linear prediction; sparsity; speech dereverberation; REVERBERATION; NOISE;
D O I
10.1109/LSP.2016.2640939
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we present an adaptive speech dereverberation method based on constrained sparse multichannel linear prediction (MCLP), minimizing the mixed l(2),p norm of the desired component. In order to prevent overestimation of the undesired reverberant component, possibly leading to severe distortions of the output, we propose to use a statistical model for late reverberation to limit the power of the MCLP-based estimate. The resulting constrained optimization problem is solved by using the alternating direction method of multipliers, resulting in two variants of the dereverberation algorithm. Simulation results show that the proposed constraint increases the robustness with respect to parameter selection and improves the usability for dynamic scenarios in comparison to the unconstrained method.
引用
收藏
页码:101 / 105
页数:5
相关论文
共 50 条
  • [1] Online Speech Dereverberation Algorithm Based on Adaptive Multichannel Linear Prediction
    Yang, Jae-Mo
    Kang, Hong-Goo
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (03) : 608 - 619
  • [2] Constrained Multichannel Speech Dereverberation
    Yu, Meng
    Soong, Frank K.
    [J]. 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 1936 - 1939
  • [3] CONSTRAINED MULTI-CHANNEL LINEAR PREDICTION FOR ADAPTIVE SPEECH DEREVERBERATION
    Jukic, Ante
    Wang, Zichao
    van Waterschoot, Toon
    Gerkmann, Timo
    Doclo, Simon
    [J]. 2016 IEEE INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2016,
  • [4] Online Speech Dereverberation Using Mixture of Multichannel Linear Prediction Models
    Ikeshita, Rintaro
    Kinoshita, Keisuke
    Kamo, Naoyuki
    Nakatani, Tomohiro
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1580 - 1584
  • [5] Dereverberation and denoising using multichannel linear prediction
    Delcroix, Marc
    Hikichi, Takafumi
    Miyoshi, Masato
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007, 15 (06): : 1791 - 1801
  • [6] Precise dereverberation using multichannel linear prediction
    Delcroix, Marc
    Hikichi, Takafumi
    Miyoshi, Masato
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007, 15 (02): : 430 - 440
  • [7] Multichannel Linear Prediction-Based Speech Dereverberation Considering Sparse and Low-Rank Priors
    Wang, Taihui
    Yang, Feiran
    Yang, Jun
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 1724 - 1735
  • [8] Robust Multichannel Linear Prediction for Online Speech Dereverberation Using Weighted Householder Least Squares Lattice Adaptive Filter
    Wung, Jason
    Jukic, Ante
    Malik, Sarmad
    Souden, Mehrez
    Pichevar, Ramin
    Atkins, Joshua
    Naik, Devang
    Acero, Alex
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3559 - 3574
  • [9] A tensor decomposition based multichannel linear prediction approach to speech dereverberation
    Zeng, Xiaojin
    He, Hongsen
    Chen, Jingdong
    Benesty, Jacob
    [J]. APPLIED ACOUSTICS, 2023, 214
  • [10] Blind speech dereverberation using sparse decomposition and multi-channel linear prediction
    Mousavi, Leila
    Razzazi, Farbod
    Haghbin, Afrooz
    [J]. INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2019, 22 (03) : 729 - 738