A new class of antimagic Cartesian product graphs

被引:33
|
作者
Cheng, Yongxi [1 ]
机构
[1] Tsinghua Univ, Inst Theoret Comp Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Antimagic; Magic; Labeling; Regular graph; Cartesian product;
D O I
10.1016/j.disc.2007.12.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An antimagic labeling of a finite undirected simple graph with m edges and n vertices is a bijection from the set of edges to the integers 1,...,m such that all n-vertex sums are pairwise distinct, where I vertex sum is the sum of labels of all edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel [N. Hartsfield. G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1990, pp. 108-109, Revised version, 1994] conjectured that every simple connected graph, except K-2, is antimagic. In this article, we prove that a new class of Cartesian product graphs are antimagic. In particular, by combining this result and the antimagicness result on toroidal grids (Cartesian products of two cycles) in [Tao-Ming Wang, Toroidal grids are anti-magic, in: Proc. 11th Annual International Computing and Combinatorics Conferences COCOON'2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671-679], all Cartesian products of two or more regular graphs of positive degree can be proved to be antimagic. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:6441 / 6448
页数:8
相关论文
共 50 条
  • [1] Distance antimagic labelings of Cartesian product of graphs
    Cutinho, Nancy Jaseintha
    Sudha, S.
    Arumugam, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 940 - 942
  • [2] Construction of Antimagic Labeling for the Cartesian Product of Regular Graphs
    Phanalasy, Oudone
    Miller, Mirka
    Iliopoulos, Costas S.
    Pissis, Solon P.
    Vaezpour, Elaheh
    MATHEMATICS IN COMPUTER SCIENCE, 2011, 5 (01) : 81 - 87
  • [3] A New Class of Antimagic Join Graphs
    WANG Tao
    LI Deming
    Wuhan University Journal of Natural Sciences, 2014, 19 (02) : 153 - 155
  • [4] On super (a, 1)-edge-antimagic total labelings of cartesian product graphs
    Lee, Ming-Ju
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2013, 16 (2-3): : 117 - 124
  • [5] Distance Antimagic Product Graphs
    Simanjuntak, Rinovia
    Tritama, Aholiab
    SYMMETRY-BASEL, 2022, 14 (07):
  • [6] A Class of Antimagic Join Graphs
    Tao WANG
    Ming Ju LIU
    De Ming LI
    Acta Mathematica Sinica,English Series, 2013, (05) : 1019 - 1026
  • [7] A Class of Antimagic Join Graphs
    Tao WANG
    Ming Ju LIU
    De Ming LI
    ActaMathematicaSinica, 2013, 29 (05) : 1019 - 1026
  • [8] A Class of Antimagic Join Graphs
    Wang, Tao
    Liu, Ming Ju
    Li, De Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (05) : 1019 - 1026
  • [9] A class of antimagic join graphs
    Tao Wang
    Ming Ju Liu
    De Ming Li
    Acta Mathematica Sinica, English Series, 2013, 29 : 1019 - 1026
  • [10] Antimagic Labeling for Product of Regular Graphs
    Latchoumanane, Vinothkumar
    Varadhan, Murugan
    SYMMETRY-BASEL, 2022, 14 (06):