Thermal conductivity and lubrication characteristics of nanofluids

被引:286
|
作者
Hwang, Y. [1 ]
Park, H. S. [1 ]
Lee, J. K. [1 ]
Jung, W. H. [2 ]
机构
[1] Pusan Natl Univ, Dept Mech Engn, San 30, Busan 609735, South Korea
[2] LG Elect, Compressor Div, Chang Won 641713, Geyongnam, South Korea
关键词
Nanofluid; Fullerene; Thermal conductivity; Extreme pressure;
D O I
10.1016/j.cap.2006.01.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanofluid is a kind of new engineering material consisting of nanometer-sized particles dispersed in base fluid. In this study, various nanoparticles, such as multi-walled carbon nanotube (MWCNT), fullerene, copper oxide, silicon dioxide and silver, are used to produce nanofluids for enhancing thermal conductivity and lubrication. As base fluids, DI water, ethylene glycol, oil, silicon oil and poly-a-olefin oil (PAO) are used. To investigate the thermo-physical properties of nanofluids, thermal conductivity and kinematic viscosity are measured. Stability estimation of nanofluid is conducted with UV-vis spectrophotometer. Also, the extreme pressure of nanofluids has been measured with FALEX EP tester. Thermal conductivity of nanofluid increases with increasing particle volume fraction except water-based fullerene nanofluid which has lower thermal conductivity than base fluid due to its lower thermal conductivity, 0.4 W/mK. In addition of fullerene in oil, the extreme pressure of nanofluids increases up to 225%. Stability of nanofluid is influenced by the characteristics between base fluid and suspended nanoparticles. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:E67 / E71
页数:5
相关论文
共 50 条
  • [1] Stability and thermal conductivity characteristics of nanofluids
    Hwang, Y.
    Lee, J. K.
    Lee, C. H.
    Jung, Y. M.
    Cheong, S. I.
    Lee, C. G.
    Ku, B. C.
    Jang, S. P.
    THERMOCHIMICA ACTA, 2007, 455 (1-2) : 70 - 74
  • [2] Investigation on characteristics of thermal conductivity enhancement of nanofluids
    Hwang, Y. J.
    Ahn, Y. C.
    Shin, H. S.
    Lee, C. G.
    Kim, G. T.
    Park, H. S.
    Lee, J. K.
    CURRENT APPLIED PHYSICS, 2006, 6 (06) : 1068 - 1071
  • [3] An updated review on the nanofluids characteristics: Preparation and measurement methods of nanofluids thermal conductivity
    Hemmat Esfe, Mohammad
    Afrand, Masoud
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 138 (06) : 4091 - 4101
  • [4] Thermal conductivity of nanofluids
    Assael, M. J.
    Chen, C. -F.
    Metaxa, I. N.
    Wakeham, W. A.
    Thermal Conductivity 27: Thermal Expansion 15, 2005, 27 : 153 - 163
  • [5] Thermal conductivity of nanofluids
    Singh, A. K.
    DEFENCE SCIENCE JOURNAL, 2008, 58 (05) : 600 - 607
  • [6] On the thermal conductivity of nanofluids
    V. Ya. Rudyak
    A. A. Belkin
    E. A. Tomilina
    Technical Physics Letters, 2010, 36 : 660 - 662
  • [7] On the thermal conductivity of nanofluids
    Rudyak, V. Ya.
    Belkin, A. A.
    Tomilina, E. A.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (07) : 660 - 662
  • [8] Thermal Conductivity of Nanofluids
    Keblinski, Pawel
    THERMAL NANOSYSTEMS AND NANOMATERIALS, 2009, 118 : 213 - 221
  • [9] STABILITY AND THERMAL CONDUCTIVITY CHARACTERISTICS OF CARBON NANOTUBE BASED NANOFLUIDS
    Fadhillahanafi, N. M.
    Leong, K. Y.
    Risby, M. S.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2013, 8 : 1376 - 1384
  • [10] Effects of the thermal conductivity of contact materials on elastohydrodynamic lubrication characteristics
    Kaneta, M.
    Yang, P.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2010, 224 (C12) : 2577 - 2587