Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity

被引:176
|
作者
He, Mingzhu [1 ,2 ]
Ju, Weimin [1 ,2 ]
Zhou, Yanlian [1 ,3 ]
Chen, Jingming [1 ,2 ]
He, Honglin [4 ]
Wang, Shaoqiang [4 ]
Wang, Huimin [4 ]
Guan, Dexin [5 ]
Yan, Junhua [6 ]
Li, Yingnian [7 ]
Hao, Yanbin [8 ]
Zhao, Fenghua [4 ]
机构
[1] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Sch Geog & Oceanog Sci, Nanjing 210093, Jiangsu, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[5] Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China
[6] Chinese Acad Sci, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China
[7] Chinese Acad Sci, Northwest Inst Plateau Biol, Xining 810008, Peoples R China
[8] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
Gross primary productivity; Two-leaf light use efficiency (TL-LUE) model; MOD17; algorithm; Sunlit and shaded leaves; PHOTOSYNTHETICALLY ACTIVE RADIATION; LEYMUS-CHINENSIS STEPPE; NET ECOSYSTEM EXCHANGE; FOREST ECOSYSTEMS; DIFFUSE-RADIATION; DECIDUOUS FOREST; SOLAR-RADIATION; CARBON-DIOXIDE; MODIS; SATELLITE;
D O I
10.1016/j.agrformet.2013.01.003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Gross primary productivity (GPP) is a key component of land atmospheric carbon exchange. Reliable calculation of regional/global GPP is crucial for understanding the response of terrestrial ecosystems to climate change and human activity. In recent years, many light use efficiency (LUE) models driven by remote sensing data have been developed for calculating GPP at various spatial and temporal scales. However, some studies show that GPP calculated by LUE models was biased by different degrees depending on sky clearness conditions. In this study, a two-leaf light use efficiency (TL-LUE) model is developed based on the MOD 17 algorithm to improve the calculation of GPP. This TL-LUE model separates the canopy into sunlit and shaded leaf groups and calculates GPP separately for them with different maximum light use efficiencies. Different algorithms are developed to calculate the absorbed photosynthetically active radiation for these two groups. GPP measured at 6 typical ecosystems in China was used to calibrate and validate the model. The results show that with the calibration using tower measurements of GPP, the MOD17 algorithm was able to capture the variations of measured GPP in different seasons and sites. But it tends to understate and overestimate GPP under the conditions of low and high sky clearness, respectively. The new TL-LUE model outperforms the MOD17 algorithm in reproducing measured GPP at daily and 8-day scales, especially at forest sites. The calibrated LUE of shaded leaves is 2.5-3.8 times larger than that of sunlit leaves. The newly developed TL-LUE model shows lower sensitivity to sky conditions than the MOD17 algorithm. This study demonstrates the potential of the TL-LUE model in improving GPP calculation due to proper description of differences in the LUE of sunlit and shaded leaves and in the transfer of direct and diffuse light beams within the canopy. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 39
页数:12
相关论文
共 50 条
  • [1] Improving MODIS Gross Primary Productivity by Bridging Big-Leaf and Two-Leaf Light Use Efficiency Models
    Ma, Yongming
    Guan, Xiaobin
    Chen, Jing Ming
    Ju, Weimin
    Huang, Wenli
    Shen, Huanfeng
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2024, 129 (05)
  • [2] Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in China Based on a Two-Leaf Light Use Efficiency Model
    Zhou, Yanlian
    Wu, Xiaocui
    Ju, Weimin
    Zhang, Leiming
    Chen, Zhi
    He, Wei
    Liu, Yibo
    Shen, Yang
    REMOTE SENSING, 2020, 12 (20) : 1 - 21
  • [3] Seasonal Effect of the Vegetation Clumping Index on Gross Primary Productivity Estimated by a Two-Leaf Light Use Efficiency Model
    Li, Zhilong
    Jiao, Ziti
    Wang, Chenxia
    Yin, Siyang
    Guo, Jing
    Tong, Yidong
    Gao, Ge
    Tan, Zheyou
    Chen, Sizhe
    REMOTE SENSING, 2023, 15 (23)
  • [4] Improving global gross primary productivity estimation using two-leaf light use efficiency model by considering various environmental factors via machine learning
    Li, Zhilong
    Jiao, Ziti
    Gao, Ge
    Guo, Jing
    Wang, Chenxia
    Chen, Sizhe
    Tan, Zheyou
    Zhao, Wenyu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 954
  • [5] A REVISED TWO-LEAF LIGHT USE EFFICIENCY MODEL FOR IMPROVING GROSS PRIMARY PRODUCTION ESTIMATION AT A TROPICAL EVERGREEN BROADLEAVED FOREST SITE
    Huang, Lingxiao
    Liu, Meng
    Jiang, Yazhen
    Tang, Ronglin
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7153 - 7155
  • [6] Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites
    Zhou, Yanlian
    Wu, Xiaocui
    Ju, Weimin
    Chen, Jing M.
    Wang, Shaoqiang
    Wang, Huimin
    Yuan, Wenping
    Black, T. Andrew
    Jassal, Rachhpal
    Ibrom, Andreas
    Han, Shijie
    Yan, Junhua
    Margolis, Hank
    Roupsard, Olivier
    Li, Yingnian
    Zhao, Fenghua
    Kiely, Gerard
    Starr, Gregory
    Pavelka, Marian
    Montagnani, Leonardo
    Wohlfahrt, Georg
    D'Odorico, Petra
    Cook, David
    Arain, M. Altaf
    Bonal, Damien
    Beringer, Jason
    Blanken, Peter D.
    Loubet, Benjamin
    Leclerc, Monique Y.
    Matteucci, Giorgio
    Nagy, Zoltan
    Olejnik, Janusz
    U, Kyaw Tha Paw
    Varlagin, Andrej
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2016, 121 (04) : 1045 - 1072
  • [7] Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data
    Zan, Mei
    Zhou, Yanlian
    Ju, Weimin
    Zhang, Yongguang
    Zhang, Leiming
    Liu, Yibo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 613 : 977 - 989
  • [8] A global gross primary productivity of sunlit and shaded canopies dataset from 2002 to 2020 via embedding random forest into two-leaf light use efficiency model
    Li, Zhilong
    Jiao, Ziti
    Gao, Ge
    Guo, Jing
    Wang, Chenxia
    Chen, Sizhe
    Tan, Zheyou
    DATA IN BRIEF, 2025, 58
  • [9] An Adjusted Two-Leaf Light Use Efficiency Model for Improving GPP Simulations Over Mountainous Areas
    Xie, Xinyao
    Li, Ainong
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
  • [10] Observed increasing light-use efficiency of terrestrial gross primary productivity
    Liu, Zhibin
    He, Chenyang
    Xu, Jiang
    Sun, Huanfa
    Dai, Xi
    Cui, Erqian
    Qiu, Chunjing
    Xia, Jianyang
    Huang, Kun
    AGRICULTURAL AND FOREST METEOROLOGY, 2024, 359