Computer assisted proof for normally hyperbolic invariant manifolds

被引:18
|
作者
Capinski, Maciej J. [1 ]
Simo, Carles [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
关键词
COVERING RELATIONS; CONE CONDITIONS; CHAOS; ATTRACTORS; EXISTENCE;
D O I
10.1088/0951-7715/25/7/1997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a topological proof of the existence of a normally hyperbolic invariant manifold for maps. In our approach we do not require that the map is a perturbation of some other map for which we already have an invariant manifold. But a non-rigorous, good enough, guess is necessary. The required assumptions are formulated in a way which allows for an 'a posteriori' verification by rigorous-interval-based numerical analysis. We apply our method for a driven logistic map, for which non-rigorous numerical simulation in plain double precision suggests the existence of a chaotic attractor. We prove that this numerical evidence is false and that the attractor is a normally hyperbolic invariant curve.
引用
收藏
页码:1997 / 2026
页数:30
相关论文
共 50 条
  • [1] Geometric proof for normally hyperbolic invariant manifolds
    Capinski, Maciej J.
    Zgliczynski, Piotr
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 6215 - 6286
  • [2] Computer assisted proof of drift orbits along normally hyperbolic manifolds
    Capi, Maciej J.
    Gonzalez, Jorge
    Marco, Jean-Pierre
    Mireles, Jason D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 106
  • [3] On the computation of normally hyperbolic invariant manifolds
    Broer, HW
    Osinga, HM
    Vegter, G
    NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 423 - 447
  • [4] A λ-lemma for normally hyperbolic invariant manifolds
    Cresson, Jacky
    Wiggins, Stephen
    REGULAR & CHAOTIC DYNAMICS, 2015, 20 (01): : 94 - 108
  • [5] A λ-lemma for normally hyperbolic invariant manifolds
    Jacky Cresson
    Stephen Wiggins
    Regular and Chaotic Dynamics, 2015, 20 : 94 - 108
  • [6] Approximate normally hyperbolic invariant manifolds for semiflows
    Bates, PW
    Lu, KN
    Zeng, CC
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS AND COMPUTATIONAL SIMULATIONS, 2000, : 27 - 31
  • [7] Algorithms for computing normally hyperbolic invariant manifolds
    H.W. Broer;
    H.M. Osinga;
    G. Vegter;
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1997, 48 : 480 - 524
  • [8] NUMERICAL APPROXIMATION OF NORMALLY HYPERBOLIC INVARIANT MANIFOLDS
    Broer, Henk
    Hagen, Aaron
    Vegter, Gert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 133 - 140
  • [9] Numerical continuation of normally hyperbolic invariant manifolds
    Broer, H. W.
    Hagen, A.
    Vegter, G.
    NONLINEARITY, 2007, 20 (06) : 1499 - 1534
  • [10] Algorithms for computing normally hyperbolic invariant manifolds
    Broer, HW
    Osinga, HM
    Vegter, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (03): : 480 - 524