An Interface-Unfitted Finite Element Method for Elliptic Interface Optimal Control Problems

被引:7
|
作者
Yang, Chaochao [1 ,2 ]
Wang, Tao [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
[2] Chongqing Univ Technol, Sch Sci, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
Interface equations; interface control; variational discretization concept; cut finite element method; CONSTRAINED OPTIMAL-CONTROL; ERROR ESTIMATION; A-PRIORI; APPROXIMATION; CONVERGENCE; EQUATIONS; ROBUST; JUMP;
D O I
10.4208/nmtma.OA-2018-0031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops and analyses numerical approximation for linear-quadratic optimal control problems governed by elliptic interface equations. We adopt variational discretization concept to discretize optimal control problems, and apply an interface-unfitted finite element method due to [A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191(47-48): 5537-5552, 2002] to discretize the corresponding state and adjoint equations, where piecewise cut basis functions around interface are enriched into standard conforming finite element space. Optimal error estimates in both L-2 norm and a mesh-dependent norm are derived for the optimal state, co-state and control under different regularity assumptions. Numerical results verify the theoretical results.
引用
收藏
页码:727 / 749
页数:23
相关论文
共 50 条
  • [1] An Interface-Unfitted Conforming Enriched Finite Element Method for Stokes-Elliptic Interface Problems with Jump Coefficients
    Wang, Hua
    Chen, Jinru
    Sun, Pengtao
    Lan, Rihui
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (04) : 1174 - 1200
  • [2] An unfitted interface penalty finite element method for elliptic interface problems
    Huang, Peiqi
    Wu, Haijun
    Xiao, Yuanming
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 323 : 439 - 460
  • [3] AN UNFITTED hp-INTERFACE PENALTY FINITE ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS
    Wu, Haijun
    Xiao, Yuanming
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (03) : 316 - 339
  • [4] A MULTIGRID METHOD FOR UNFITTED FINITE ELEMENT DISCRETIZATIONS OF ELLIPTIC INTERFACE PROBLEMS
    Ludescher, Thomas
    Gross, Sven
    Reusken, Arnold
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A318 - A342
  • [5] An unfitted finite-element method for elliptic and parabolic interface problems
    Sinha, Rajen Kumar
    Deka, Bhupen
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2007, 27 (03) : 529 - 549
  • [6] Unfitted mixed finite element methods for elliptic interface problems
    Alshehri, Najwa
    Boffi, Daniele
    Gastaldi, Lucia
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
  • [7] An unfitted finite element method, based on Nitsche's method, for elliptic interface problems
    Hansbo, A
    Hansbo, P
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (47-48) : 5537 - 5552
  • [8] An adaptive high-order unfitted finite element method for elliptic interface problems
    Zhiming Chen
    Ke Li
    Xueshuang Xiang
    [J]. Numerische Mathematik, 2021, 149 : 507 - 548
  • [9] Analysis of a high-order unfitted finite element method for elliptic interface problems
    Lehrenfeld, Christoph
    Reusken, Arnold
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1351 - 1387
  • [10] An adaptive high-order unfitted finite element method for elliptic interface problems
    Chen, Zhiming
    Li, Ke
    Xiang, Xueshuang
    [J]. NUMERISCHE MATHEMATIK, 2021, 149 (03) : 507 - 548