Oxidant-Induced High-Efficient Mussel-Inspired Modification on PVDF Membrane with Superhydrophilicity and Underwater Superoleophobicity Characteristics for Oil/Water Separation

被引:134
|
作者
Luo, Chongdan [1 ]
Liu, Qingxia [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
polydopamine; microfiltration; superhydrophilicity; underwater superoleophobicity; oil/water separation; SURFACE MODIFICATION; POLYMER MEMBRANES; OIL; WATER; POLYDOPAMINE; HYDROPHILICITY; PLASMA; FABRICATION; POLY(DOPA); PROGRESS;
D O I
10.1021/acsami.6b16206
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, a facile one-step approach was developed to modify hydrophobic polyvinylidene fluoride (PVDF) microfiltration membrane with superhydrophilicity and underwater superoleophobicity properties via a high-efficient deposition of polydopamine (PDA) coating oxidized by sodium periodate in a slightly acidic environment (pH = 5.0). In contrast to the traditional PDA coating on hydrophobic membranes autoxidized by O-2 in a weak basic buffer solution, the superhydrophilicity and ultrahigh pure water permeability (about 11 934 L m(-2) h(-1) under 0.038 MPa) of the PDA-decorated PVDF membrane are derived from optimized chemical oxidation without postmoclifications or additional reactants. The as-prepared membrane exhibits excellent oil/water separation ability evaluated by water fluxes and oil rejection ratios of various oil/water mixtures and oil-in-water emulsions. Moreover, the outstanding antifouling performance and reusability of the PDA-modified PVDF membrane provide a long-term durability for many potential applications. The modified membrane also exhibits excellent chemical stability in harsh pH environments and mechanical stability for practical applications.
引用
下载
收藏
页码:8297 / 8307
页数:11
相关论文
共 50 条
  • [1] Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in-Water Emulsion Separation
    Wang, Zhenxing
    Jiang, Xu
    Cheng, Xiquan
    Lau, Cher Hon
    Shao, Lu
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (18) : 9534 - 9545
  • [2] Modification of cotton fabric by mussel-inspired for oil/water separation
    Liping Liang
    Yimeng Huang
    Haihua Zhan
    Bojun Xi
    Xu Meng
    Fibers and Polymers, 2017, 18 : 1763 - 1768
  • [3] Modification of cotton fabric by mussel-inspired for oil/water separation
    Liang, Liping
    Huang, Yimeng
    Zhan, Haihua
    Xi, Bojun
    Meng, Xu
    FIBERS AND POLYMERS, 2017, 18 (09) : 1763 - 1768
  • [4] Mussel-inspired hydrophilic modification of polypropylene membrane for oil-in-water emulsion separation
    Fang, Shang
    Zhang, Zhepeng
    Yang, Hao
    Wang, Gang
    Gu, Lin
    Xia, Lei
    Zeng, Zhixiang
    Zhu, Lijing
    SURFACE & COATINGS TECHNOLOGY, 2020, 403
  • [5] Clay-Coated Meshes with Superhydrophilicity and Underwater Superoleophobicity for Highly Efficient Oil/Water Separation
    Yang, Shaolin
    Zhen, Cheng
    Li, Fangfang
    Fu, Panpan
    Li, Maohui
    Lu, Youjun
    Sheng, Zhilin
    MATERIALS, 2023, 16 (12)
  • [6] Robust self-cleaning membrane with superhydrophilicity and underwater superoleophobicity for oil-in-water separation
    Yue, Reng-Yu
    Yuan, Peng-Cheng
    Zhang, Chun-Miao
    Wan, Zhang-Hong
    Wang, Shu-Guang
    Sun, Xuefei
    CHEMOSPHERE, 2023, 330
  • [7] Mussel-Inspired Chemical Modification of Cotton Fabrics for Oil/Water Separation
    Meng, Xu
    Dong, Yanyan
    Song, Chengzhi
    Arias, Manuel J. Lis
    Yan, Junfeng
    Liang, Liping
    ACS APPLIED ENGINEERING MATERIALS, 2024, 2 (03): : 753 - 761
  • [8] Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation
    Yang, Hao-Cheng
    Liao, Kun-Jian
    Huang, He
    Wu, Qing-Yun
    Wan, Ling-Shu
    Xu, Zhi-Kang
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (26) : 10225 - 10230
  • [9] Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation
    Wang, Meng
    Peng, Min
    Zhu, Jiang
    Li, Yi-Dong
    Zeng, Jian-Bing
    CARBOHYDRATE POLYMERS, 2020, 244
  • [10] Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil-Water Separation
    Huang, Kang-Ting
    Yeh, Shiou-Bang
    Huang, Chun-Jen
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (38) : 21021 - 21029