Generalized synchronization and coherent structures in spatially extended systems

被引:7
|
作者
Basnarkov, Lasko [1 ,3 ]
Duane, Gregory S. [2 ,3 ]
Kocarev, Ljupco [1 ,3 ,4 ]
机构
[1] SS Cyril & Methodius Univ, Fac Comp Sci & Engn, Skopje, Macedonia
[2] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[3] Macedonian Acad Sci & Arts, Skopje, Macedonia
[4] Univ Calif San Diego, BioCircuits Inst, San Diego, CA 92103 USA
关键词
SPATIOTEMPORAL CHAOS; DATA ASSIMILATION; EQUATIONS;
D O I
10.1016/j.chaos.2013.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the synchronization of a coupled pair of one-dimensional Kuramoto-Sivashinsky systems, with equations augmented by a third-space-derivative term. With two different values of a system parameter, the two systems synchronize in the generalized sense. The phenomenon persists even in the extreme case when one of the equations is missing the extra term. Master-slave synchronization error is small, so the generalized synchronization relationship is useful for predicting the state of the master from that of the slave, or conversely, for controlling the slave. The spatial density of coupling points required to bring about generalized synchronization appears to be related to the wavelength of traveling wave solutions, and more generally to the width of coherent structures in the separate systems. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 50 条
  • [1] Synchronization in networks of spatially extended systems
    Filatova, Anastasiya E.
    Hramov, Alexander E.
    Koronovskii, Alexey A.
    Boccaletti, Stefano
    CHAOS, 2008, 18 (02)
  • [2] Transition to stochastic synchronization in spatially extended systems
    Baroni, L
    Livi, R
    Torcini, A
    PHYSICAL REVIEW E, 2001, 63 (03): : 362261 - 362261
  • [3] Hierarchical structures in spatially extended systems
    Liu, J
    She, ZS
    Ouyang, Q
    He, XT
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4139 - 4148
  • [4] Synchronization of spatially extended chaotic systems with asymmetric coupling
    Boccaletti, S
    Mendoza, C
    Bragard, J
    BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 411 - 417
  • [5] New way to achieve synchronization in spatially extended systems
    Gupta, BC
    Sreeram, PA
    Lee, SB
    MODERN PHYSICS LETTERS B, 2001, 15 (16): : 535 - 543
  • [6] Convective instabilities of synchronization manifolds in spatially extended systems
    Mendoza, C
    Boccaletti, S
    Politi, A
    PHYSICAL REVIEW E, 2004, 69 (04): : 4
  • [7] Stabilization of coherent oscillations in spatially extended dynamical systems
    Binder, PM
    Jaramillo, JF
    PHYSICAL REVIEW E, 1997, 56 (02): : 2276 - 2278
  • [8] Complex dynamics and phase synchronization in spatially extended ecological systems
    Bernd Blasius
    Amit Huppert
    Lewi Stone
    Nature, 1999, 399 : 354 - 359
  • [9] Identifying phase synchronization clusters in spatially extended dynamical systems
    Bialonski, Stephan
    Lehnertz, Klaus
    PHYSICAL REVIEW E, 2006, 74 (05)
  • [10] Chaotic waves and phase synchronization in spatially extended ecological systems
    Blasius, B
    Stone, L
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 221 - 225