A bound for the Schur index of irreducible representations of finite groups

被引:1
|
作者
Kiselev, D. D. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
关键词
finite group; Schur index; universally compatible extensions;
D O I
10.1070/SM2013v204n08ABEH004334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an optimal bound for the Schur index of irreducible complex representations of finite groups over the field of rational numbers, when only the prime divisors of the order of the group are known. We study relationships with compatible and universally compatible extensions of number fields. We give a simpler proof of the well-known Berman-Yamada bound for the Schur index over the field Q(p). Bibliography: 7 titles.
引用
收藏
页码:1152 / 1160
页数:9
相关论文
共 50 条