Numerical investigation on flow and convective heat transfer of aviation kerosene at supercritical conditions

被引:23
|
作者
Dang GuoXin [1 ]
Zhong FengQuan [1 ]
Chen LiHong [1 ]
Chang XinYu [1 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab High Temp Gas Dynam, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
aviation kerosene; supercritical; convective heat transfer; numerical study; PRESSURE;
D O I
10.1007/s11431-012-5075-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, characteristics of flow and convective heat transfer of China RP-3 kerosene in straight circular pipe were numerically studied. Navier-Stokes equations were solved using RNG k-epsilon turbulence model with low Reynolds number correction. The thermophysical and transport properties of the China RP-3 kerosene were calculated with a 10-species surrogate and the extended corresponding state method (ECS) combined with Benedict-Webb-Rubin equation. The independence of grids was first studied and the numerical results were then compared with experimental data for validation. Under flow conditions given in the paper, the results show that deterioration of convective heat transfer occurs when the wall temperature is slightly higher than the pseudo-critical temperature of kerosene for cases with wall heat flux of 1.2 and 0.8 MW/m(2). The degree of the heat transfer deterioration is weakened as the heat flux decreases. The deterioration, however, does not happen when the heat flux on the pipe wall is reduced to 0.5 MW/m(2). Based on the analysis of the near-wall turbulent properties, it is found that the heat transfer deterioration and then the enhancement are attributed partly to the change in the turbulent kinetic energy in the vicinity of pipe wall. The conventional heat transfer relations such as Sieder-Tate and Gnielinski formulas can be used for the estimation of kerosene heat convection under subcritical conditions, but they are not capable of predicting the phenomenon of heat transfer deterioration. The modified Bae-Kim formula can describe the heat transfer deterioration. In addition, the frictional drag would increase dramatically when the fuel transforms to the supercritical state.
引用
收藏
页码:416 / 422
页数:7
相关论文
共 50 条
  • [1] Numerical investigation on flow and convective heat transfer of aviation kerosene at supercritical conditions
    GuoXin Dang
    FengQuan Zhong
    LiHong Chen
    XinYu Chang
    Science China Technological Sciences, 2013, 56 : 416 - 422
  • [2] Numerical investigation on flow and convective heat transfer of aviation kerosene at supercritical conditions
    DANG GuoXin
    ZHONG FengQuan
    CHEN LiHong
    CHANG XinYu
    Science China(Technological Sciences) , 2013, (02) : 416 - 422
  • [3] Numerical investigation on flow and convective heat transfer of aviation kerosene at supercritical conditions
    DANG GuoXin
    ZHONG FengQuan
    CHEN LiHong
    CHANG XinYu
    Science China(Technological Sciences), 2013, 56 (02) : 416 - 422
  • [4] Numerical investigation on convective heat transfer of supercritical aviation kerosene in a horizontal tube under hyper gravity conditions
    Lv, Lulu
    Wen, Jie
    Fu, Yanchen
    Quan, Yongkai
    Zhu, Jianqin
    Xu, Guoqiang
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 105 (105)
  • [5] Numerical investigation on convective heat transfer to aviation kerosene flowing in vertical tubes at supercritical pressures
    Pu, Hang
    Li, Sufen
    Jiao, Si
    Dong, Ming
    Shang, Yan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 118 : 857 - 871
  • [6] NUMERICAL STUDY ON FLOW AND CONVECTIVE HEAT TRANSFER OF AVIATION KEROSENE IN A VERTICAL MINITUBE AT SUPERCRITICAL PRESSURES
    Huang, Dan
    Wu, Zan
    Sunden, Bengt
    COMPUTATIONAL THERMAL SCIENCES, 2015, 7 (5-6): : 375 - 384
  • [7] Heat Transfer of Aviation Kerosene at Supercritical Conditions
    Zhong, Fengquan
    Fan, Xuejun
    Yu, Gong
    Li, Jianguo
    Sung, Chih-Jen
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2009, 23 (03) : 543 - 550
  • [8] Investigation of pyrolysis effect on convective heat transfer characteristics of supercritical aviation kerosene
    Jiao, Si
    Li, Sufen
    Pu, Hang
    Dong, Ming
    Shang, Yan
    ACTA ASTRONAUTICA, 2020, 171 : 55 - 68
  • [9] Numerical Analysis of Heat Transfer Characteristics for Supercritical Aviation Kerosene
    Song, Yachao
    Ma, Danjiao
    Zhang, Jingzhi
    Chen, Jing-xiang
    Chen, Songze
    Li, Wei
    PROCEEDINGS OF THE ASME 13TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2015, 2015,
  • [10] Numerical study of conjugate heat transfer of aviation kerosene at supercritical pressures
    Wang, Lei-Lei
    Xu, Ke-Ke
    Meng, Hua
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2013, 34 (07): : 1357 - 1360