On the maximal operator of Marcinkiewicz-Fejer means of the two-dimensional Walsh-Kaczmarz system

被引:0
|
作者
Nagy, Karoly [1 ]
机构
[1] Coll Nyiregyhaza, Inst Math & Comp Sci, H-4400 Nyiregyhaza, Hungary
关键词
Walsh-Kaczmarz system; Marcinkiewicz means; maximal operator; DOUBLE FOURIER-SERIES; RESPECT; SUMMABILITY; INEQUALITY;
D O I
10.1515/gmj-2013-0011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2009, Goginava showed that sigma(kappa,#) f := sup(A is an element of P)vertical bar sigma(kappa)(2A) f vertical bar, where sigma(K)(2A) f is the 2(A)th Marcinkiewicz Fejer mean of the Walsh-Kaczmarz-Fourier series, is not bounded from the Hardy space H-1/2 to the space L-1/2. The main aim of this paper is to show that the maximal operator (sigma) over tilde (kappa,#) f := sup(A is an element of P)vertical bar sigma(kappa)(2A) f vertical bar/(log(2) 2(A)) is bounded from the Hardy space H-1/2 to the space L-1/2. Moreover, it is proved that the order of deviant behavior of the 2(A)th Walsh-Kacmarz-MarcinIdewicz-Fejer mean is exactly log(2) 2(A).
引用
收藏
页码:319 / 332
页数:14
相关论文
共 50 条