Scaling and the thermal conductivity of the Frenkel-Kontorova model

被引:12
|
作者
Shao, Zhi-Gang [1 ,2 ]
Yang, Lei [1 ,2 ,4 ,5 ]
Zhong, Wei-Rong [1 ,2 ]
He, Da-Hai [1 ,2 ]
Hu, Bambi [1 ,2 ,3 ]
机构
[1] Hong Kong Baptist Univ, Dept Phys, Ctr Nonlinear Studies, Kowloon Tong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Beijing Hong Kong Singapore Joint Ctr Nonlinear &, Kowloon Tong, Hong Kong, Peoples R China
[3] Univ Houston, Dept Phys, Houston, TX 77204 USA
[4] Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China
[5] Lanzhou Univ, Dept Phys, Lanzhou, Peoples R China
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
关键词
D O I
10.1103/PhysRevE.78.061130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have studied the dependence of the thermal conductivity kappa on the strength of the interparticle potential lambda and the strength of the external potential beta in the Frenkel-Kontorova model. We found that the functional relation can be expressed in a scaling form, kappa(proportional to) lambda 3/2/beta(2 center dot). This result is first obtained by nonequilibrium molecular dynamics. It is then confirmed by two analytical methods, the self-consistent phonon theory and the self-consistent stochastic reservoirs method. The thermal conductivity kappa is therefore a decreasing functon of beta and an increasing function of lambda.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] TRANSPORT IN THE FRENKEL-KONTOROVA MODEL .3. THERMAL-CONDUCTIVITY
    GILLAN, MJ
    HOLLOWAY, RW
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (30): : 5705 - 5720
  • [2] The Frenkel-Kontorova Model
    Floría, LM
    Baesens, C
    Gómez-Gardeñes, J
    DYNAMICS OF COUPLED MAP LATTICES AND OF RELATED SPATIALLY EXTENDED SYSTEMS, 2005, 671 : 209 - 240
  • [3] Lattice vibrations in the Frenkel-Kontorova Model. II. Thermal conductivity
    Meng, Qingping
    Wu, Lijun
    Welch, David O.
    Zhu, Yimei
    PHYSICAL REVIEW B, 2015, 91 (22)
  • [4] Quantum Frenkel-Kontorova model
    Hu, BB
    Li, BW
    PHYSICA A, 2000, 288 (1-4): : 81 - 97
  • [5] NONANALYTIC FRENKEL-KONTOROVA MODEL
    SHI, JC
    HU, BB
    PHYSICAL REVIEW A, 1992, 45 (08): : 5455 - 5461
  • [6] Quantum Frenkel-Kontorova model
    Ho, CL
    Chou, CI
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 399 - 402
  • [7] Renormalization and quantum scaling of Frenkel-Kontorova models
    Catarino, NR
    MacKay, RS
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (5-6) : 995 - 1014
  • [8] Sliding dynamics of the Frenkel-Kontorova model
    Strunz, T
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1995, 50 (12): : 1108 - 1112
  • [9] QUANTUM EFFECTS IN THE FRENKEL-KONTOROVA MODEL
    BORGONOVI, F
    GUARNERI, I
    SHEPELYANSKY, DL
    PHYSICAL REVIEW LETTERS, 1989, 63 (19) : 2010 - 2012
  • [10] FRENKEL-KONTOROVA MODEL WITH ANHARMONIC INTERACTIONS
    MILCHEV, A
    MAZZUCCHELLI, GM
    PHYSICAL REVIEW B, 1988, 38 (04): : 2808 - 2812