Fault Detection and Classification of a Photovoltaic Generator Using the BES Optimization Algorithm Associated with SVM

被引:4
|
作者
Koloko, R. J. Koloko [1 ,2 ]
Ele, P. [1 ,2 ,3 ]
Wamkeue, R. [1 ,2 ,4 ]
Melingui, A. [1 ]
机构
[1] Univ Yaounde I, Natl Adv Sch Engn, Lab Elect Engn Mechatron & Signal Proc, Soa, Cameroon
[2] Univ Yaounde1, Univ Ctr Res Energy Hlth CURES, Natl Adv Sch Engn, Soa, Cameroon
[3] Univ Douala, Doctoral Training Unit Engn Sci, Lab Technol & Appl Sci LTSA, Soa, Cameroon
[4] Univ Yaounde I, Ctr Excellence Informat & Commun Technol CET, Natl Adv Sch Engn, Soa, Cameroon
关键词
SOLAR-CELL MODELS; CUCKOO SEARCH ALGORITHM; I-V MODEL; PARAMETER-ESTIMATION; IDENTIFICATION; EXTRACTION;
D O I
10.1155/2022/6841861
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, an innovative approach based on the estimation of the photovoltaic generator (GPV) parameters from the Bald Eagle Search (BES) optimization algorithm, associated with a support vector machine (SVM) classification algorithm, allowed to highlight a new tool for the classification of the signatures of shading and moisture PV defects. It recognizes signatures generated by the GPV in healthy and erroneous operation using the optimized parametric vector and classifies defects using the same optimized vector. The technique emphasizes the resilience of parameter estimate in terms of error on all parameters. The classification accuracy is 93%. The residuals between the estimated curve in healthy operation with a minimum error of the order of 10(-4) and the one at fault are used as an indicator of faults.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Parameter optimization algorithm of SVM for fault classification in traction converter
    Zhao Jin
    Wu Chaorong
    Huang Chengguang
    Wu Feng
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 3786 - 3791
  • [2] Fault Detection, Classification and Localization Algorithm for Photovoltaic Array
    Mehmood, Ahsan
    Sher, Hadeed Ahmed
    Murtaza, Ali Faisal
    Al-Haddad, Kamal
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2021, 36 (04) : 2945 - 2955
  • [3] Fault Classification Using SVM
    Mandava, Mani Swetha
    Jadhav, Devika
    Naik, Roshan Ramakrishna
    2015 IEEE INTERNATIONAL CIRCUITS AND SYSTEMS SYMPOSIUM (ICSYS), 2015, : 17 - 21
  • [4] Optimization of SVM classifier using Grid Search Method for Line-Line Fault Detection of Photovoltaic Systems
    Eskandari, Aref
    Milimonfared, Jafar
    Aghaei, Mohammadreza
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 1134 - 1137
  • [5] Breast Cancer Detection Improvement by Grasshopper Optimization Algorithm and Classification SVM
    Rahmani A.E.
    Katouli M.
    Revue d'Intelligence Artificielle, 2020, 34 (02) : 195 - 202
  • [6] Classification of Bearing Fault Detection Using Multiclass SVM: A comparative study
    Zgarni, Slaheddine
    Braham, Ahmed
    2018 15TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES (SSD), 2018, : 888 - 892
  • [7] Analog Fault Detection and Classification Using Genetic Algorithm
    Moghadam, Reza Askari
    PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 293 - +
  • [8] Image classification optimization algorithm based on SVM
    Liu, Zemin
    Wei, Zong
    Journal of Multimedia, 2013, 8 (05): : 496 - 502
  • [9] Fault Detection and Classification in Interconnected System with Wind Generation Using ANN and SVM
    Shah, Hinal
    Chothani, Nilesh
    Chakravorty, Jaydeep
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 20 (03) : 225 - 239
  • [10] Fault Detection And Classification Method Using DWT And SVM In A Power Distribution Network
    Magagula, X. G.
    Hamam, Y.
    Jordaan, J. A.
    Yusuff, A. A.
    2017 IEEE PES POWERAFRICA CONFERENCE, 2017, : 1 - 6