On the Baker-Campbell-Hausdorff Theorem: non-convergence and prolongation issues

被引:6
|
作者
Biagi, Stefano [1 ]
Bonfiglioli, Andrea [2 ]
Matone, Marco [3 ,4 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato,5, I-40126 Bologna, Italy
[3] Univ Padua, Dipartimento Fis & Astron G Galilei, Padua, Italy
[4] Univ Padua, Ist Nazl Fis Nucl, Padua, Italy
来源
LINEAR & MULTILINEAR ALGEBRA | 2020年 / 68卷 / 07期
关键词
Baker-Campbell-Hausdorff Theorem; matrix algebras; convergence of the BCH series; prolongation of the BCH series; analytic prolongation; logarithms; HORMANDER OPERATORS; LIE-GROUPS; FORMULA; MAGNUS; DYNKIN;
D O I
10.1080/03081087.2018.1540534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate some topics related to the celebrated Baker-Campbell-Hausdorff Theorem: a non-convergence result and prolongation problems. Given a Banach algebra A with identity I, and given X, Y is an element of A, we study the relationship of different issues: the convergence of the BCH series Sigma(n)Z(n)(X, Y), the existence of a logarithm of e(X)e(Y), and the convergence of the Mercator-type series Sigma(n) (-1)(n+1)(e(X)e(Y) - I)(n)/n which provides a selected logarithm of e(X)e(Y). We fix general results, among which we provide a non-convergence result for the BCH series, and (by suitable matrix counterexamples) we show that various pathologies can occur. These are related to some recent results, of interest in physics, on closed formulas for the BCH series: while the sum of the BCH series presents several non-convergence issues, these closed formulas can provide a prolongation for the BCH series when it is not convergent. On the other hand, we show by suitable counterexamples that an analytic prolongation of the BCH series can be singular even if the BCH series itself is convergent.
引用
收藏
页码:1310 / 1328
页数:19
相关论文
共 50 条
  • [1] On the convergence and optimization of the Baker-Campbell-Hausdorff formula
    Blanes, S
    Casas, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 378 : 135 - 158
  • [2] THE BAKER-CAMPBELL-HAUSDORFF FORMULA AND THE CONVERGENCE OF THE MAGNUS EXPANSION
    KLARSFELD, S
    OTEO, JA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (21): : 4565 - 4572
  • [3] Goldberg's theorem and the Baker-Campbell-Hausdorff formula
    Kobayashi, H
    Hatano, N
    Suzuki, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 250 (1-4) : 535 - 548
  • [4] BAKER-CAMPBELL-HAUSDORFF FORMULAS
    GILMORE, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (12) : 2090 - 2092
  • [5] A NON-ASSOCIATIVE BAKER-CAMPBELL-HAUSDORFF FORMULA
    Mostovoy, J.
    Perez-Izquierdo, J. M.
    Shestakov, I. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (12) : 5109 - 5122
  • [6] Explicit Baker-Campbell-Hausdorff Expansions
    Van-Brunt, Alexander
    Visser, Matt
    MATHEMATICS, 2018, 6 (08):
  • [7] An algorithm for the Baker-Campbell-Hausdorff formula
    Marco Matone
    Journal of High Energy Physics, 2015
  • [8] An algorithm for the Baker-Campbell-Hausdorff formula
    Matone, Marco
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05): : 1 - 9
  • [9] Posetted Trees and Baker-Campbell-Hausdorff Product
    Iacono, Donatella
    Manetti, Marco
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (02) : 611 - 623
  • [10] Replica Resummation of the Baker-Campbell-Hausdorff Series
    Vajna, Szabolcs
    Klobas, Katja
    Prosen, Tomaz
    Polkovnikov, Anatoli
    PHYSICAL REVIEW LETTERS, 2018, 120 (20)