TIME SERIES FORECASTING. A COMPARATIVE STUDY BETWEEN AN EVOLVING ARTIFICIAL NEURAL NETWORKS SYSTEM AND STATISTICAL METHODS

被引:14
|
作者
Peralta Donate, Juan [1 ]
Gutierrez Sanchez, German [1 ]
Sanchis De Miguel, Araceli [1 ]
机构
[1] Univ Carlos III Madrid, Dept Comp Sci, Av Univ 30, Madrid 28911, Spain
关键词
Evolutionary computation; genetic algorithms; artificial neural networks; time series; forecasting; statistic;
D O I
10.1142/S0218213011000462
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate time series forecasting are important for displaying the manner in which the past continues to affect the future and for planning our day to-day activities. In recent years, a large literature has evolved on the use of evolving artificial neural networks (EANN) in many forecasting applications. Evolving neural networks are particularly appealing because of their ability to model an unspecified non-linear relationship between time series variables. In this work, a new approach of a previous Automatic Design of Artificial Neural Networks (ADANN) system applied to forecast time series is tackled. The automatic process to design artificial neural networks is carried out by a genetic algorithm (GA). These new methods, in order to get an accurate forecasting, are related with: shuffling training and validation patterns obtained from time series values and trying to improve the fitness function used in the global learning process (i.e. GA) using a new patterns set called validation II apart of the two used till the moment (i.e. training and validation). The object of this study is to try to improve the final forecasting getting an accurate system. In this paper, we also compare the forecasting ability of the ARIMA approach, evolving artificial neural networks (ADANN), unobserved components model (UCM) and a forecasting tool called Forecast Pro software using six benchmark time series.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Artificial neural networks in time series forecasting: A comparative analysis
    Allende, H
    Moraga, C
    Salas, R
    KYBERNETIKA, 2002, 38 (06) : 685 - 707
  • [2] Time Series Forecasting Using Artificial Neural Networks vs. Evolving Models
    Antonio Iglesias, Jose
    Gutierrez, German
    Ledezma, Agapito
    Sanchis, Araceli
    2014 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2014,
  • [3] Time series forecasting by evolving artificial neural networks using genetic algorithms and differential evolution
    Peralta, Juan
    Li, Xiaodong
    Gutierrez, German
    Sanchis, Araceli
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [4] Nonlinear time series forecasting with artificial neural networks
    Zhang, GP
    Patuwo, BE
    Hu, MY
    DECISION SCIENCES INSTITUTE 1998 PROCEEDINGS, VOLS 1-3, 1998, : 1023 - 1025
  • [5] Artificial Neural Networks for Forecasting of Fuzzy Time Series
    Reuter, U.
    Moeller, B.
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2010, 25 (05) : 363 - 374
  • [6] Artificial neural networks applied to forecasting time series
    Montano Moreno, Juan Jose
    Palmer Pol, Alfonso
    Munoz Gracia, Pilar
    PSICOTHEMA, 2011, 23 (02) : 322 - 329
  • [7] A New Intelligent System Methodology for Time Series Forecasting with Artificial Neural Networks
    Tiago A. E. Ferreira
    Germano C. Vasconcelos
    Paulo J. L. Adeodato
    Neural Processing Letters, 2008, 28 : 113 - 129
  • [8] A new intelligent system methodology for time series forecasting with artificial neural networks
    Ferreira, Tiago A. E.
    Vasconcelos, Germano C.
    Adeodato, Paulo J. L.
    NEURAL PROCESSING LETTERS, 2008, 28 (02) : 113 - 129
  • [9] A simulation study of artificial neural networks for nonlinear time-series forecasting
    Zhang, GP
    Patuwo, BE
    Hu, MY
    COMPUTERS & OPERATIONS RESEARCH, 2001, 28 (04) : 381 - 396
  • [10] Simulation study of artificial neural networks for nonlinear time-series forecasting
    Department of Decision Sciences, J. Mack Robinson College of Business, Georgia State University, Atlanta, GA 30303-3083, United States
    不详
    Computers and Operations Research, 2001, 28 (04): : 381 - 396