Blow-up behavior of a fractional Adams-Moser-Trudinger-type inequality in odd dimension

被引:13
|
作者
Maalaoui, Ali [1 ]
Martinazzi, Luca [2 ]
Schikorra, Armin [3 ]
机构
[1] Amer Univ Ras Al Khaimah, Ras Al Khaymah, U Arab Emirates
[2] Univ Basel, Math & Comp Sci, Basel, Switzerland
[3] Univ Freiburg, Math Inst, Freiburg, Germany
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Fractional Laplacian; Moser-Trudinger inequality; Q-curvature; quantization; 35J30; 35J61; 35S05; REGULARITY; EQUATION; SYSTEMS;
D O I
10.1080/03605302.2016.1222544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a smoothly bounded domain Omega subset of R-n with n >= 1 odd, we study the blowup of bounded sequences (u(k)) subset of H-00(n/2)(Omega) of solutions to the nonlocal equation (-Delta)(n/2) u(k) = lambda(k)u(k)e(n/2u2/k) in Omega where lambda(k) -> lambda(infinity) is an element of[0, infinity), and H-00(n/2)(Omega) denotes the Lions-Magenes spaces of functions u is an element of L-2(R-n) which are supported in Omega and with (-Delta)(n/4) u is an element of L-2(R-n). Extending previous works of Druet, Robert-Struwe, and Martinazzi, we show that if the sequence (u(k)) is not bounded in L-infinity(Omega), a suitably rescaled subsequence n(k) converges to the function eta(0)(x) = log (2/1+vertical bar x vertical bar(2)), which solves the prescribed nonlocal Q-curvature equation (-Delta)(n/2) eta = (n = 1)(!en eta) in R-n recently studied by Da Lio-Martinazzi-Riviere when n = 1, Jin-Maalaoui-Martinazzi-Xiong when n = 3, and Hyder when n >= 5 is odd. We infer that blowup can occur only if Lambda := lim sup(k ->infinity) parallel to(-Delta)(n/4) u(k)parallel to(2)(L2) >= Lambda(1) := (n = 1)!vertical bar S-n vertical bar.
引用
收藏
页码:1593 / 1618
页数:26
相关论文
共 45 条
  • [1] Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality
    Adimurthi
    Druet, O
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) : 295 - 322
  • [2] Fractional Adams-Moser-Trudinger type inequality on Heisenberg group
    Gupta, Madhu
    Tyagi, Jagmohan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [3] Fractional Adams Moser Trudinger type inequalities
    Martinazzi, Luca
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 127 : 263 - 278
  • [4] Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two
    Yang, Yunyan
    Zhu, Xiaobao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (08) : 3347 - 3374
  • [5] A FRACTIONAL MOSER-TRUDINGER TYPE INEQUALITY IN ONE DIMENSION AND ITS CRITICAL POINTS
    Iula, Stefano
    Maalaoui, Ali
    Martinazzi, Luca
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (5-6) : 455 - 492
  • [6] A Moser–Trudinger type inequality on the Orlicz fractional space
    Abderrahmane Lakhdari
    Nedra Belhaj Rhouma
    Mounir Hsini
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 33 - 62
  • [7] Fractional Trudinger–Moser Type Inequalities in One Dimension
    Duy Tuan Nguyen
    Triet Anh Nguyen
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 1483 - 1500
  • [8] Sign-changing blow-up for the Moser-Trudinger equation
    Martinazzi, Luca
    Thizy, Pierre-Damien
    Vetois, Jerome
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (02)
  • [9] FRACTIONAL ADAMS-MOSER-TRUDINGER TYPE INEQUALITY WITH SINGULAR TERM IN LORENTZ SPACE AND LP SPACE
    Wu, Yan
    Wang, Guanglan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (01): : 133 - 145
  • [10] A Moser-Trudinger type inequality on the Orlicz fractional space
    Lakhdari, Abderrahmane
    Rhouma, Nedra Belhaj
    Hsini, Mounir
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 33 - 62