Regularity Properties for Solutions of Infinite Dimensional Kolmogorov Equations in Hilbert Spaces

被引:11
|
作者
Andersson, Adam [1 ]
Hefter, Mario [2 ]
Jentzen, Arnulf [3 ]
Kurniawan, Ryan [3 ]
机构
[1] Syntron Software Innovat, Lindholmspiren 3A, SE-31756 Gothenburg, Sweden
[2] TU Kaiserslautern, Dept Math, Postfach 3049, D-67653 Kaiserslautern, Germany
[3] Eidgenoss TH Zurich, Seminar Appl Math, Ramistr 101, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Infinite dimensional Kolmogorov equations; Generalized solutions;
D O I
10.1007/s11118-018-9685-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we establish regularity properties for solutions of infinite dimensional Kolmogorov equations. We prove that if the nonlinear drift coefficients, the nonlinear diffusion coefficients, and the initial conditions of the considered Kolmogorov equations are n-times continuously Frechet differentiable, then so are the generalized solutions at every positive time. In addition, a key contribution of this work is to prove suitable enhanced regularity properties for the derivatives of the generalized solutions of the Kolmogorov equations in the sense that the dominating linear operator in the drift coefficient of the Kolmogorov equation regularizes the higher order derivatives of the solutions. Such enhanced regularity properties are of major importance for establishing weak convergence rates for spatial and temporal numerical approximations of stochastic partial differential equations.
引用
收藏
页码:347 / 379
页数:33
相关论文
共 50 条
  • [1] Regularity Properties for Solutions of Infinite Dimensional Kolmogorov Equations in Hilbert Spaces
    Adam Andersson
    Mario Hefter
    Arnulf Jentzen
    Ryan Kurniawan
    [J]. Potential Analysis, 2019, 50 : 347 - 379
  • [2] Classical solutions for Kolmogorov equations in Hilbert spaces
    Cerrai, S
    [J]. SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 55 - 71
  • [3] Regularity for obstacle problems in infinite dimensional Hilbert spaces
    Swiech, Andrzej
    Teixeira, Eduardo V.
    [J]. ADVANCES IN MATHEMATICS, 2009, 220 (03) : 964 - 983
  • [4] ON REGULARITY OF WEAK SOLUTIONS OF ABSTRACT DIFFERENTIAL EQUATIONS IN HILBERT SPACES
    BARBU, V
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1968, 45 (3-4): : 129 - &
  • [5] Infinite-dimensional kolmogorov equations in Gauss-Sobolev spaces
    Chow, PL
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1996, 14 (03) : 257 - 282
  • [6] Equations, State, and Lattices of Infinite-Dimensional Hilbert Spaces
    Norman D. Megill
    Mladen Pavičićc
    [J]. International Journal of Theoretical Physics, 2000, 39 : 2337 - 2379
  • [7] Equations, states, and lattices of infinite-dimensional Hilbert spaces
    Megill, ND
    Pavicic, M
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (10) : 2337 - 2379
  • [8] Strong solutions for Kolmogorov equation in Hilbert spaces
    Gozzi, F
    [J]. PARTIAL DIFFERENTIAL EQUATION METHODS IN CONTROL AND SHAPE ANALYSIS, 1997, 188 : 163 - 187
  • [9] Regularity of Solutions to Kolmogorov Equations with Perturbed Drifts
    Bogachev, Vladimir I.
    Kosov, Egor D.
    Shaposhnikov, Alexander V.
    [J]. POTENTIAL ANALYSIS, 2023, 58 (04) : 681 - 702
  • [10] Regularity of Solutions to Kolmogorov Equations with Perturbed Drifts
    Vladimir I. Bogachev
    Egor D. Kosov
    Alexander V. Shaposhnikov
    [J]. Potential Analysis, 2023, 58 : 681 - 702