Bipartite Q-polynomial distance-regular graphs and uniform posets

被引:13
|
作者
Miklavic, Stefko [1 ,2 ]
Terwilliger, Paul [3 ]
机构
[1] Univ Primorska, UP IAM, Koper 6000, Slovenia
[2] Univ Primorska, UP FAMNIT, Koper 6000, Slovenia
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Distance-regular graphs; Q-Polynomial structure; Uniform posets; SUBCONSTITUENT; INEQUALITY; ALGEBRA;
D O I
10.1007/s10801-012-0401-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I" denote a bipartite distance-regular graph with vertex set X and diameter Da parts per thousand yen3. Fix xaX and let L (resp., R) denote the corresponding lowering (resp., raising) matrix. We show that each Q-polynomial structure for I" yields a certain linear dependency among RL (2), LRL, L (2) R, L. Define a partial order a parts per thousand currency sign on X as follows. For y,zaX let ya parts per thousand currency signz whenever a,(x,y)+a,(y,z)=a,(x,z), where a, denotes path-length distance. We determine whether the above linear dependency gives this poset a uniform or strongly uniform structure. We show that except for one special case a uniform structure is attained, and except for three special cases a strongly uniform structure is attained.
引用
下载
收藏
页码:225 / 242
页数:18
相关论文
共 50 条