Fully discrete semi-Lagrangian methods for advection of differential forms

被引:6
|
作者
Heumann, Holger [1 ]
Hiptmair, Ralf [1 ]
Li, Kun [2 ]
Xu, Jinchao [3 ]
机构
[1] Swiss Fed Inst Technol, Seminar Appl Math, Zurich, Switzerland
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Advection-diffusion problem; Discrete differential forms; Discrete Lie derivative; Semi-Lagrangian methods; MIXED FINITE-ELEMENTS; DOMINATED DIFFUSION-PROBLEMS; HYPERBOLIC PROBLEMS; EXTERIOR CALCULUS; NUMERICAL-METHODS; GALERKIN METHOD; EQUATIONS; CONVERGENCE; TRANSPORT; STABILITY;
D O I
10.1007/s10543-012-0382-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the discretization of linear transient transport problems for differential forms on bounded domains. The focus is on unconditionally stable semi-Lagrangian methods that employ finite element approximation on fixed meshes combined with tracking of the flow map. We derive these methods as finite element Galerkin approach to discrete material derivatives and discuss further approximations leading to fully discrete schemes. We establish comprehensive a priori error estimates, in particular a new asymptotic estimate of order for the L (2)-error of semi-Lagrangian schemes with exact L (2)-projection. Here, h is the spatial meshwidth, tau denotes the timestep, and r is the (full) polynomial degree of the piecewise polynomial discrete differential forms used as trial functions. Yet, numerical experiments hint that the estimates may still be sub-optimal for spatial discretization with lowest order discrete differential forms.
引用
收藏
页码:981 / 1007
页数:27
相关论文
共 50 条
  • [1] Fully discrete semi-Lagrangian methods for advection of differential forms
    Holger Heumann
    Ralf Hiptmair
    Kun Li
    Jinchao Xu
    [J]. BIT Numerical Mathematics, 2012, 52 : 981 - 1007
  • [2] EULERIAN AND SEMI-LAGRANGIAN METHODS FOR CONVECTION-DIFFUSION FOR DIFFERENTIAL FORMS
    Heumann, Holger
    Hiptmair, Ralf
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (04) : 1471 - 1495
  • [3] Meshfree Semi-Lagrangian Methods for Solving Surface Advection PDEs
    Petras, Argyrios
    Ling, Leevan
    Ruuth, Steven J.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)
  • [4] Meshfree Semi-Lagrangian Methods for Solving Surface Advection PDEs
    Argyrios Petras
    Leevan Ling
    Steven J. Ruuth
    [J]. Journal of Scientific Computing, 2022, 93
  • [5] Parallel algorithms for semi-Lagrangian advection
    Malevsky, AV
    Thomas, SJ
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 25 (04) : 455 - 473
  • [6] SEMI-LAGRANGIAN ADVECTION ON A GAUSSIAN GRID
    ROCHAS, M
    [J]. MONTHLY WEATHER REVIEW, 1988, 116 (04) : 969 - 970
  • [7] SEMI-LAGRANGIAN ADVECTION ON A GAUSSIAN GRID
    RITCHIE, H
    [J]. MONTHLY WEATHER REVIEW, 1987, 115 (02) : 608 - 619
  • [8] Massively parallel semi-Lagrangian advection
    Thomas, S.
    Cote, J.
    [J]. Simulation Practice and Theory, 1995, 3 (4-5): : 223 - 238
  • [9] A Conservative Semi-Lagrangian Method for the Advection Problem
    Efremov, Alexandr
    Karepova, Evgeniya
    Shaidurov, Vladimir
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 325 - 333
  • [10] Semi-Lagrangian advection on a spherical geodesic grid
    Carfora, Maria Francesca
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 55 (02) : 127 - 142