PROOF OF A CONGRUENCE FOR HARMONIC NUMBERS CONJECTURED BY Z.-W. SUN

被引:6
|
作者
Mestrovic, Romeo [1 ]
机构
[1] Univ Montenegro, Dept Math, Maritime Fac, Kotor 85330, Montenegro
关键词
Harmonic numbers; congruences; Bernoulli numbers; WOLSTENHOLMES THEOREM; SUMS;
D O I
10.1142/S1793042112500649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer n let H-n = Sigma(n)(k=1) 1/k be the nth harmonic number. In this paper, we prove that for any prime p >= 7, Sigma(p-1)(k=1) H-k(2)/k(2) equivalent to 4/5pB(p-5) (mod p(2)), which confirms the conjecture recently proposed by Z.-W. Sun. Furthermore, we also prove two similar congruences modulo p(2).
引用
收藏
页码:1081 / 1085
页数:5
相关论文
共 50 条