Non-cell-autonomous effects of Ret deletion in early enteric neurogenesis

被引:11
|
作者
Bogni, Silvia [1 ]
Trainor, Paul [2 ]
Natarajan, Dipa [1 ]
Krumlauf, Robb [2 ]
Pachnis, Vassilis [1 ]
机构
[1] Natl Inst Med Res, Div Mol Neurobiol, London NW7 1AA, England
[2] Stowers Inst Med Res, Kansas City, MO 64110 USA
来源
DEVELOPMENT | 2008年 / 135卷 / 18期
基金
英国医学研究理事会;
关键词
enteric nervous system; neural crest; Ret;
D O I
10.1242/dev.025163
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neural crest cells (NCCs) form at the dorsal margin of the neural tube and migrate along distinct pathways throughout the vertebrate embryo to generate multiple cell types. A subpopulation of vagal NCCs invades the foregut and colonises the entire gastrointestinal tract to form the enteric nervous system ( ENS). The colonisation of embryonic gut by NCCs has been studied extensively in chick embryos, and genetic studies in mice have identified genes crucial for ENS development, including Ret. Here, we have combined mouse embryo and organotypic gut culture to monitor and experimentally manipulate the progenitors of the ENS. Using this system, we demonstrate that lineally marked intestinal ENS progenitors from E11.5 mouse embryos grafted into the early vagal NCC pathway of E8.5 embryos colonise the entire length of the gastrointestinal tract. By contrast, similar progenitors transplanted into Ret-deficient host embryos are restricted to the proximal foregut. Our findings establish an experimental system that can be used to explore the interactions of NCCs with their cellular environment and reveal a previously unrecognised non-cell-autonomous effect of Ret deletion on ENS development.
引用
收藏
页码:3007 / 3011
页数:5
相关论文
共 50 条
  • [1] Deletion of Astroglial Dicer Causes Non-Cell-Autonomous Neuronal Dysfunction and Degeneration
    Tao, Jifang
    Wu, Hao
    Lin, Quan
    Wei, Weizheng
    Lu, Xiao-Hong
    Cantle, Jeffrey P.
    Ao, Yan
    Olsen, Richard W.
    Yang, X. William
    Mody, Istvan
    Sofroniew, Michael V.
    Sun, Yi E.
    JOURNAL OF NEUROSCIENCE, 2011, 31 (22): : 8306 - 8319
  • [2] Dissecting the non-cell-autonomous effects of oncogene activation on hematopoiesis
    Colleoni, C.
    Cesana, D.
    Gallina, P.
    Montini, E.
    HUMAN GENE THERAPY, 2021, 32 (19-20) : A136 - A136
  • [3] Non-cell-autonomous retrotransposon silencing
    Eytan Zlotorynski
    Nature Reviews Molecular Cell Biology, 2016, 17 (5) : 265 - 265
  • [4] Dissecting the Non-Cell-Autonomous Effects of Oncogene Activation on Hematopoiesis
    Colleoni, Cristina
    Cesana, Daniela
    Gallina, Pierangela
    Montini, Eugenio
    MOLECULAR THERAPY, 2021, 29 (04) : 334 - 335
  • [5] Do cell-autonomous and non-cell-autonomous effects drive the structure of tumor ecosystems?
    Tissot, Tazzio
    Ujvari, Beata
    Solary, Eric
    Lassus, Patrice
    Roche, Benjamin
    Thomas, Frederic
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2016, 1865 (02): : 147 - 154
  • [6] Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases
    Sambataro, Fabio
    Pennuto, Maria
    PROGRESS IN NEUROBIOLOGY, 2012, 97 (02) : 152 - 172
  • [7] Cell-autonomous and non-cell-autonomous functions of caspase-8
    Ben Moshe, Tehila
    Kang, Tae-Bong
    Kovalenko, Andrew
    Barash, Hila
    Abramovitch, Rinat
    Galun, Eithan
    Wallach, David
    CYTOKINE & GROWTH FACTOR REVIEWS, 2008, 19 (3-4) : 209 - 217
  • [8] Non-cell-autonomous effects yield lower clonal diversity in expanding tumors
    Tissot, Tazzio
    Thomas, Frederic
    Roche, Benjamin
    SCIENTIFIC REPORTS, 2017, 7
  • [9] Non-cell-autonomous effects yield lower clonal diversity in expanding tumors
    Tazzio Tissot
    Frédéric Thomas
    Benjamin Roche
    Scientific Reports, 7
  • [10] Non-cell-autonomous effects of arginase-II in macrophages on cardiomyocytes in aging
    Potenza, D. M.
    Cheng, X.
    Ajalbert, G.
    Brenna, A.
    Giraud, M. N.
    Frobert, A.
    Cook, S.
    Mertz, K. D.
    Yang, Z.
    Ming, X. F.
    EUROPEAN HEART JOURNAL, 2024, 45