On nilpotent Lie algebras of small breadth

被引:12
|
作者
Khuhirun, Borworn [1 ]
Misra, Kailash C. [1 ]
Stitzinger, Ernie [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Lie algebra; Nilpotent; Breadth; Classification; P-GROUPS;
D O I
10.1016/j.jalgebra.2015.07.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Lie algebra L is said to be of breadth k if the maximal dimension of the images of left multiplication by elements of the algebra is k. In this paper we give characterization of finite dimensional nilpotent Lie algebras of breadth less than or equal to two. Furthermore, using these characterizations we determined the isomorphism classes of these algebras. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:328 / 338
页数:11
相关论文
共 50 条
  • [1] Breadth and characteristic sequence of nilpotent Lie algebras
    Remm, Elisabeth
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 2956 - 2966
  • [2] Nilpotent Lie algebras of breadth type (0,3)
    Kundu, Rijubrata
    Naik, Tushar Kanta
    Singh, Anupam
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (09) : 3792 - 3809
  • [3] Nilpotent metric Lie algebras of small dimension
    Kath, Ines
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 41 - 61
  • [4] Capability of Nilpotent Lie Algebras of Small Dimension
    Fatemeh Pazandeh Shanbehbazari
    Peyman Niroomand
    Francesco G. Russo
    Afsaneh Shamsaki
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1153 - 1167
  • [5] Capability of Nilpotent Lie Algebras of Small Dimension
    Shanbehbazari, Fatemeh Pazandeh
    Niroomand, Peyman
    Russo, Francesco G.
    Shamsaki, Afsaneh
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 1153 - 1167
  • [6] NILPOTENT LIE ALGEBRAS OF DERIVATIONS WITH THE CENTER OF SMALL CORANK
    Chapovskyi, Y. Y.
    Mashchenko, L. Z.
    Petravchuk, A. P.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) : 189 - 198
  • [7] On the Betti numbers of nilpotent Lie algebras of small dimension
    Cairns, G
    Jessup, B
    Pitkethly, J
    INTEGRABLE SYSTEMS AND FOLIATIONS, 1997, 145 : 19 - 31
  • [8] Nilpotent Lie Algebras with a Small Second Derived Quotient
    Zack, Laurie M.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (12) : 4607 - 4619
  • [9] COHOMOLOGY OF NILPOTENT LIE ALGEBRAS - APPLICATION TO STUDY OF VARIETY OF NILPOTENT LIE ALGEBRAS
    VERGNE, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1970, 98 (02): : 81 - &
  • [10] Characterization of nilpotent Lie algebras of breadth 3 over finite fields of odd characteristic
    Sriwongsa, Songpon
    Wiboonton, Keng
    Khuhirun, Borworn
    JOURNAL OF ALGEBRA, 2021, 586 : 935 - 972