GNA: new framework for statistical data analysis

被引:0
|
作者
Fatkina, Anna [1 ]
Gonchar, Maxim [1 ]
Kalitkina, Anastasia [1 ]
Kolupaeva, Liudmila [1 ]
Naumov, Dmitry [1 ]
Selivanov, Dmitry [1 ]
Treskov, Konstantin [1 ]
机构
[1] Joint Inst Nucl Res, Moscow, Russia
来源
23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018) | 2019年 / 214卷
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1051/epjconf/201921405024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We report on the status of GNA - a new framework for fitting largescale physical models. GNA utilizes the data flow concept within which a model is represented by a directed acyclic graph. Each node is an operation on an array (matrix multiplication, derivative or cross section calculation, etc). The framework enables the user to create flexible and efficient large-scale lazily evaluated models, handle large numbers of parameters, propagate parameters' uncertainties while taking into account possible correlations between them, fit models, and perform statistical analysis. The main goal of the paper is to give an overview of the main concepts and methods as well as reasons behind their design. Detailed technical information is to be published in further works.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] CUDA Support in GNA Data Analysis Framework
    Fatkina, Anna
    Gonchar, Maxim
    Kolupaeva, Liudmila
    Naumov, Dmitry
    Treskov, Konstantin
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2018, PT IV, 2018, 10963 : 12 - 24
  • [2] A new statistical framework for genetic pleiotropic analysis of high dimensional phenotype data
    Wang, Panpan
    Rahman, Mohammad
    Jin, Li
    Xiong, Momiao
    BMC GENOMICS, 2016, 17
  • [3] A new statistical framework for genetic pleiotropic analysis of high dimensional phenotype data
    Panpan Wang
    Mohammad Rahman
    Li Jin
    Momiao Xiong
    BMC Genomics, 17
  • [4] HistFitter software framework for statistical data analysis
    Baak, M.
    Besjes, G. J.
    Cote, D.
    Koutsman, A.
    Lorenz, J.
    Short, D.
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (04): : 1 - 20
  • [5] HistFitter - A flexible framework for statistical data analysis
    Lorenz, J. M.
    Baak, M.
    Besjes, G. J.
    Cote, D.
    Koutsman, A.
    Short, D.
    16TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2014), 2015, 608
  • [6] HistFitter: a flexible framework for statistical data analysis
    Besjes, G. J.
    Baak, M.
    Cote, D.
    Koutsman, A.
    Lorenz, J. M.
    Short, D.
    21ST INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2015), PARTS 1-9, 2015, 664
  • [7] HistFitter software framework for statistical data analysis
    M. Baak
    G. J. Besjes
    D. Côté
    A. Koutsman
    J. Lorenz
    D. Short
    The European Physical Journal C, 2015, 75
  • [8] Going beyond Poisson processes: a new statistical framework in neuronal modeling and data analysis
    Taşkın Deniz
    Stefan Rotter
    BMC Neuroscience, 14 (Suppl 1)
  • [9] A Statistical Framework for the Analysis of ChIP-Seq Data
    Kuan, Pei Fen
    Chung, Dongjun
    Pan, Guangjin
    Thomson, James A.
    Stewart, Ron
    Keles, Suenduez
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 891 - 903
  • [10] Statistical analysis as methodological framework for data(base) integration
    Altareva, E
    Conrad, S
    CONCEPTUAL MODELING - ER 2003, PROCEEDINGS, 2003, 2813 : 17 - 30