Completeness of the induced cotorsion pairs in categories of quiver representations

被引:8
|
作者
Odabasi, Sinem [1 ]
机构
[1] Univ Austral Chile, Inst Ciencias Fis & Matemat, Valdivia, Chile
关键词
Cotorsion pairs; Quiver representations; Abelian categories;
D O I
10.1016/j.jpaa.2019.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a complete hereditary cotorsion pair (A, B) in an abelian category C satisfying certain conditions, we study the completeness of the induced cotorsion pairs (Phi(A), Phi(A)(perpendicular to)) and ((perpendicular to)Psi(B), Psi(B)) in the category Rep (Q, C) of C-valued representations of a given quiver Q. We show that if Q is left rooted, then the cotorsion pair (Phi(A), Phi(A)(perpendicular to)) is complete, and if Q is right rooted, then the cotorsion pair ((perpendicular to)Psi(B), Psi(B)) is complete. Besides, we work on the infinite line quiver A(infinity)(infinity), which is neither left rooted nor right rooted. We prove that these cotorsion pairs in Rep(A(infinity)(infinity), R) are complete, as well. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:4536 / 4559
页数:24
相关论文
共 50 条
  • [1] Cotorsion pairs in categories of quiver representations
    Holm, Henrik
    Jorgensen, Peter
    KYOTO JOURNAL OF MATHEMATICS, 2019, 59 (03) : 575 - 606
  • [2] Categories of quiver representations and relative cotorsion pairs
    Argudin-Monroy, Alejandro
    Mendoza-Hernandez, Octavio
    JOURNAL OF ALGEBRA, 2024, 660 : 34 - 90
  • [3] Completeness of Induced Cotorsion Pairs in Representation Categories of Rooted Quivers
    Zhen Xing DI
    Li Ping LI
    Li LIANG
    Fei XU
    Acta Mathematica Sinica,English Series, 2024, (10) : 2436 - 2452
  • [4] BALANCED PAIRS, COTORSION TRIPLETS AND QUIVER REPRESENTATIONS
    Estrada, Sergio
    Perez, Marco A.
    Zhu, Haiyan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (01) : 67 - 90
  • [5] Completeness of Induced Cotorsion Pairs in Representation Categories of Rooted Quivers
    Di, Zhen Xing
    Li, Li Ping
    Liang, Li
    Xu, Fei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (10) : 2436 - 2452
  • [6] Completeness of cotorsion pairs
    Saroch, Jan
    Trlifaj, Jan
    FORUM MATHEMATICUM, 2007, 19 (04) : 749 - 760
  • [7] COTORSION THEORY IN THE CATEGORY OF QUIVER REPRESENTATIONS
    Eshraghi, Hossein
    Hafezi, Rasool
    Hosseini, Esmaeil
    Salarian, Shokrollah
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (06)
  • [8] Cotorsion pairs and model categories
    Hovey, Mark
    Interactions Between Homotopy Theory and Algebra, 2007, 436 : 277 - 296
  • [9] Cotorsion pairs in comma categories
    Yuan, Yuan
    He, Jian
    Wu, Dejun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (03) : 715 - 734
  • [10] Cotorsion Pairs and Cartan–Eilenberg Categories
    Sinem Odabaşı
    Mediterranean Journal of Mathematics, 2016, 13 : 1479 - 1493