Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits

被引:148
|
作者
Miceli, Francesco [1 ]
Soldovieri, Maria Virginia [2 ]
Ambrosino, Paolo [2 ]
Barrese, Vincenzo [1 ]
Migliore, Michele [3 ]
Cilio, Maria Roberta [4 ,5 ]
Taglialatela, Maurizio [1 ,2 ]
机构
[1] Univ Naples Federico II, Dept Neurosci, I-80131 Naples, Italy
[2] Univ Molise, Dept Med & Hlth Sci, I-86100 Campobasso, Italy
[3] CNR, Inst Biophys, I-90146 Palermo, Italy
[4] Bambino Gesu Childrens Hosp & Res Inst, Div Neurol, I-00165 Rome, Italy
[5] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
关键词
channelopathies; potassium channel gating; anticonvulsants; pi-stacking interaction; brain development; KCNQ2; SUBUNITS; K+ CHANNEL; BENIGN; SEIZURES; NEUTRALIZATION; CONVULSIONS; CHARGE; ENCEPHALOPATHY; EXCITABILITY; SUPPRESSION;
D O I
10.1073/pnas.1216867110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mutations in the K(v)7.2 gene encoding for voltage-dependent K+ channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the 54 domain of K(v)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(v)7.2 and/or K(v)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(v)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K+ channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(v)7.2 encephalopathy.
引用
收藏
页码:4386 / 4391
页数:6
相关论文
共 39 条
  • [1] Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits
    Miceli, Francesco
    Soldovieri, Maria Virginia
    Ambrosino, Paolo
    De Maria, Michela
    Migliore, Michele
    Migliore, Rosanna
    Taglialatela, Maurizio
    JOURNAL OF NEUROSCIENCE, 2015, 35 (09): : 3782 - 3793
  • [2] Mutations in the voltage-gated KV7.2 potassium channel associated with neonatal convulsions or myokymia
    Wuttke, T.
    Penzien, J.
    Lehmann-Horn, F.
    Paulus, W.
    Jurkat-Rott, K.
    Lerche, H.
    EPILEPSIA, 2007, 48 : 86 - 86
  • [3] Neonatal convulsions and peripheral nerve hyperexcitability are associated with mutations in the voltage-gated Kv7.2 (KCNQ2) potassium channel
    Wuttke, T. V.
    Lehmann-Horn, F.
    Paulus, W.
    Penzien, J.
    Jurkat-Rott, K.
    Lerche, H.
    EPILEPSIA, 2007, 48 : 56 - 56
  • [4] Point mutations in the voltage-gated potassium channel Kv7.2/7.3, and their possible involvement in epilepsy and channel gating
    Mondragon, Argel Estrada
    Kindström, Emma
    Blaufuss, Annika
    Nyendwa, Anita Mambwe
    Elinder, Fredrik
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 244A - 244A
  • [5] Kv7.2 and Kv7.3 potassium channel subunits as new central regulators of blood pressure
    Barrese, Vincenzo
    Taglialatela, Maurizio
    CARDIOVASCULAR RESEARCH, 2022, 118 (02) : 345 - 346
  • [6] SEVERE FUNCTIONAL DEFECTS OF THE KV7.2 CHANNEL CAUSED BY MUTATIONS ASSOCIATED WITH EPILEPTIC ENCEPHALOPATHIES
    Maljevic, S.
    Bock, M.
    Orhan, G.
    Shepers, D.
    Weckhuysen, S.
    Mandelstam, S.
    Suls, A.
    Scheffer, I. E.
    De Jonghe, P.
    Lerche, H.
    EPILEPSIA, 2012, 53 : 3 - 3
  • [7] Subthreshold changes of voltage-dependent activation of the Kv7.2 channel in neonatal epilepsy
    Maljevic, S.
    Hunter, J.
    Shankar, A.
    Siegel, A.
    Weissman, B.
    Holt, P.
    Olson, L.
    Escayg, A.
    Lerche, H.
    EPILEPSIA, 2006, 47 : 82 - 82
  • [8] Subthreshold changes of voltage-dependent activation of the KV7.2 channel in neonatal epilepsy
    Hunter, Jessica
    Maljevic, Snezana
    Shankar, Anupama
    Siegel, Anne
    Weissman, Barbara
    Holt, Philip
    Olson, Larry
    Lerche, Holger
    Escayg, Andrew
    NEUROBIOLOGY OF DISEASE, 2006, 24 (01) : 194 - 201
  • [9] Neutralization of a unique, negatively-charged residue in the voltage sensor of KV7.2 subunits in a sporadic case of benign familial neonatal seizures
    Miceli, Francesco
    Soldovieri, Maria Virginia
    Lugli, Licia
    Bellini, Giulia
    Ambrosino, Paolo
    Migliore, Michele
    del Giudice, Emanuele Miraglia
    Ferrari, Fabrizio
    Pascotto, Antonio
    Taglialatela, Maurizio
    NEUROBIOLOGY OF DISEASE, 2009, 34 (03) : 501 - 510
  • [10] PIP2-dependent coupling of voltage sensor and pore domains in Kv7.2 channel
    Pant, Shashank
    Zhang, Jiaren
    Kim, Eung Chang
    Lam, Kin
    Chung, Hee Jung
    Tajkhorshid, Emad
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)