BMP/SMAD Pathway Promotes Neurogenesis of Midbrain Dopaminergic Neurons In Vivo and in Human Induced Pluripotent and Neural Stem Cells

被引:72
|
作者
Jovanovic, Vukasin M. [1 ]
Salti, Ahmad [2 ,3 ]
Tilleman, Hadas [1 ]
Zega, Ksenija [1 ]
Jukic, Marin M. [1 ]
Zou, Hongyan [5 ,6 ]
Friedel, Roland H. [5 ,6 ]
Prakash, Nilima [7 ]
Blaess, Sandra [2 ,8 ]
Edenhofer, Frank [3 ,4 ]
Brodski, Claude [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Physiol & Cell Biol, Zlotowski Ctr Neurosci, Fac Hlth Sci, IL-84105 Beer Sheva, Israel
[2] Leopold Franzens Univ Innsbruck, Inst Mol Biol, A-6020 Innsbruck, Austria
[3] Leopold Franzens Univ Innsbruck, CMBI, Dept Genom Stem Cell Biol & Regenerat Med, A-6020 Innsbruck, Austria
[4] Univ Wurzburg, Inst Anat & Cell Biol, D-97070 Wurzburg, Germany
[5] Icahn Sch Med Mt Sinai, Dept Neurosci, Friedman Brain Inst, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Dept Neurosurg, Friedman Brain Inst, New York, NY 10029 USA
[7] Hamm Lippstadt Univ Appl Sci, Dept Hamm 2, D-59063 Hamm, Germany
[8] Univ Bonn, Inst Reconstruct Neurobiol, D-53127 Bonn, Germany
来源
JOURNAL OF NEUROSCIENCE | 2018年 / 38卷 / 07期
基金
美国国家卫生研究院;
关键词
embryonic development; midbrain dopaminergic neurons; neurogenesis; neuronal differentiation; stem cells; iPSC; BONE MORPHOGENETIC PROTEINS; MULTIPLE ROLES; BETA-CATENIN; HUMAN ES; BMP; FATE; SPECIFICATION; GROWTH; SMAD1; DIFFERENTIATION;
D O I
10.1523/JNEUROSCI.1540-17.2018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The embryonic formation of midbrain dopaminergic (mDA) neurons in vivo provides critical guidelines for the in vitro differentiation of mDA neurons from stem cells, which are currently being developed for Parkinson's disease cell replacement therapy. Bone morphogenetic protein (BMP)/SMAD inhibition is routinely used during early steps of stem cell differentiation protocols, including for the generation of mDA neurons. However, the function of the BMP/SMAD pathway for in vivo specification of mammalian mDA neurons is virtually unknown. Here, we report that BMP5/7-deficient mice (Bmp5(-/-); Bmp7(-/-)) lack mDA neurons due to reduced neurogenesis in the mDA progenitor domain. As molecular mechanisms accounting for these alterations in Bmp5(-/-); Bmp7(-/-) mutants, we have identified expression changes of the BMP/SMAD target genes MSX1/2 (msh homeobox 1/2) and SHH (sonic hedgehog). Conditionally inactivating SMAD1 in neural stem cells of mice in vivo (Smad1(Nes)) hampered the differentiation of progenitor cells into mDA neurons by preventing cell cycle exit, especially of TH(+)SOX6(+) (tyrosine hydroxylase, SRY-box 6) and TH(+)GIRK2(+) (potassium voltage-gated channel subfamily-J member-6) substantia nigra neurons. BMP5/7 robustly increased the in vitro differentiation of human induced pluripotent stem cells and induced neural stem cells to mDA neurons by up to threefold. In conclusion, we have identified BMP/SMAD signaling as a novel critical pathway orchestrating essential steps of mammalian mDA neurogenesis in vivo that balances progenitor proliferation and differentiation. Moreover, we demonstrate the potential of BMPs to improve the generation of stem-cell-derived mDA neurons in vitro, highlighting the importance of sequential BMP/SMAD inhibition and activation in this process.
引用
下载
收藏
页码:1662 / 1676
页数:15
相关论文
共 50 条
  • [1] Ghrelin promotes midbrain neural stem cells differentiation to dopaminergic neurons through Wnt/β-catenin pathway
    Gong, Bing
    Jiao, Lingling
    Du, Xixun
    Li, Yong
    Bi, Mingxia
    Jiao, Qian
    Jiang, Hong
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (11) : 8558 - 8570
  • [2] Canonical BMP–Smad Signalling Promotes Neurite Growth in Rat Midbrain Dopaminergic Neurons
    Shane V. Hegarty
    Louise M. Collins
    Aisling M. Gavin
    Sarah L. Roche
    Sean L. Wyatt
    Aideen M. Sullivan
    Gerard W. O’Keeffe
    NeuroMolecular Medicine, 2014, 16 : 473 - 489
  • [3] Commentary: Ghrelin promotes midbrain neural stem cells differentiation to dopaminergic neurons through the Wnt/β-catenin pathway
    Gayden, Jenesis D.
    Freyberg, Zachary
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2020, 14
  • [4] Canonical BMP-Smad Signalling Promotes Neurite Growth in Rat Midbrain Dopaminergic Neurons
    Hegarty, Shane V.
    Collins, Louise M.
    Gavin, Aisling M.
    Roche, Sarah L.
    Wyatt, Sean L.
    Sullivan, Aideen M.
    O'Keeffe, Gerard W.
    NEUROMOLECULAR MEDICINE, 2014, 16 (02) : 473 - 489
  • [5] Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells
    Jiang, Houbo
    Ren, Yong
    Yuen, Eunice Y.
    Zhong, Ping
    Ghaedi, Mahboobe
    Hu, Zhixing
    Azabdaftari, Gissou
    Nakaso, Kazuhiro
    Yan, Zhen
    Feng, Jian
    NATURE COMMUNICATIONS, 2012, 3
  • [6] Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells
    Houbo Jiang
    Yong Ren
    Eunice Y. Yuen
    Ping Zhong
    Mahboobe Ghaedi
    Zhixing Hu
    Gissou Azabdaftari
    Kazuhiro Nakaso
    Zhen Yan
    Jian Feng
    Nature Communications, 3
  • [7] GENERATION OF DOPAMINERGIC NEURONS BY FUSION OF NEURAL STEM CELLS AND MIDBRAIN NEURONS
    Yu, Y.
    Wen, T.
    CELLULAR AND MOLECULAR BIOLOGY, 2011, 57 : 1528 - 1533
  • [8] Canonical BMP-SMAD Signalling Promotes Neurite Growth in Embryonic Rat Midbrain Dopaminergic Neurons
    Hegarty, S., V
    Collins, L. M.
    Gavin, A. M.
    Roche, S. L.
    Wyatt, S. L.
    Sullivan, A. M.
    O'Keeffe, G. W.
    IRISH JOURNAL OF MEDICAL SCIENCE, 2016, 185 : S23 - S23
  • [9] Pyrolytic Carbon Nanograss Enhances Neurogenesis and Dopaminergic Differentiation of Human Midbrain Neural Stem Cells
    Asif, Afia
    Gracia-Lopez, Silvia
    Heiskanen, Arto
    Martinez-Serrano, Alberto
    Keller, Stephan S.
    Pereira, Marta
    Emneus, Jenny
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (20)
  • [10] Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons
    Chen, Yalan
    Kuang, Junxin
    Niu, Yimei
    Zhu, Hongyao
    Chen, Xiaoxia
    So, Kwok-Fai
    Xu, Anding
    Shi, Lingling
    NEURAL REGENERATION RESEARCH, 2024, 19 (04) : 908 - 914