Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses

被引:94
|
作者
Hu, Jianzhong [1 ]
Manduzio, Stefano [1 ]
Kang, Hunseung [1 ]
机构
[1] Chonnam Natl Univ, Coll Agr & Life Sci, Dept Appl Biol, Gwangju, South Korea
来源
关键词
abiotic stress; epitranscriptome; RNA metabolism; RNA methylation; RNA modification; MESSENGER-RNA; M(6)A RNA; BINDING-PROTEIN; NUCLEAR-RNA; N-6-METHYLADENOSINE; ARABIDOPSIS; EXPRESSION; DEMETHYLASE; TRANSLATION; HOMOLOG;
D O I
10.3389/fpls.2019.00500
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N-6-methyladenosine (m(6)A) and 5-methylcytidine (m(5)C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] RNA regulation in plant abiotic stress responses
    Nakaminami, Kentaro
    Matsui, Akihiro
    Shinozaki, Kazuo
    Seki, Motoaki
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 149 - 153
  • [2] Epitranscriptomic RNA Modification in Plant Development and Environmental Stress Adaptation
    Watts, Ryan
    Chen, Zhaohui
    Chen, Xiaotong
    Fiorentino, Andrew
    Jensen, Emma
    Hu, Qian
    Luo, Hong
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2024, 60 (01) : S127 - S128
  • [3] Epitranscriptomic RNA Modification in Plant Development and Environmental Stress Adaptation.
    Watts, Ryan
    Chen, Zhaohui
    Chen, Xiaotong
    Kuess, Morgan
    Jensen, Emma
    Fiorentino, Andrew
    Hu, Qian
    Luo, Hong
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2023, 59 : S131 - S131
  • [4] Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses
    Lee, Kwanuk
    Kang, Hunseung
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (12) : 1 - 17
  • [5] Plant responses to abiotic stress
    Boscaiu, Monica
    Bautista, Inmaculada
    Donat, Pilar
    Lidon, Antonio
    Llinares, Josep
    Lull, Cristina
    Mayoral, Olga
    Vicente, Oscar
    CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 : S130 - S130
  • [6] Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory
    Liu, Junzhong
    He, Zuhua
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [7] Histone methylation in plant responses to abiotic stresses
    Yu, Mei-Hui
    Liao, Wen-Chi
    Wu, Keqiang
    JOURNAL OF EXPERIMENTAL BOTANY, 2025,
  • [8] Plant RABs: Role in Development and in Abiotic and Biotic Stress Responses
    Tripathy, Manas K.
    Deswal, Renu
    Sopory, Sudhir K.
    CURRENT GENOMICS, 2021, 22 (01) : 26 - 40
  • [9] Plant polyamines in abiotic stress responses
    Kamala Gupta
    Abhijit Dey
    Bhaskar Gupta
    Acta Physiologiae Plantarum, 2013, 35 : 2015 - 2036
  • [10] Plant miRNAs and abiotic stress responses
    Lu, Xiao-Yan
    Huang, Xue-Lin
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 368 (03) : 458 - 462