Mixed quantum skew Howe duality and link invariants of type A

被引:14
|
作者
Queffelec, Hoel [1 ]
Sartori, Antonio [1 ]
机构
[1] Univ Montpellier, CNRS, Inst Montpellierain Alexander Grothendieck, Montpellier, France
关键词
Webs; Spider category; Quantum Lie superalgebras; Skew-Howe duality; HOMFLY-PT polynomial; Reshetikhin-Turaev invariants; POLYNOMIAL INVARIANT; CATEGORIFICATION; REPRESENTATIONS; ALGEBRAS; HOMOLOGY; KNOTS;
D O I
10.1016/j.jpaa.2018.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a ribbon category Sp(beta), depending on a parameter beta, which encompasses Cautis, Kamnitzer and Morrison's spider category, and describes for beta = m - n the monoidal category of representations of U-q(gl(m vertical bar n)) generated by exterior powers of the vector representation and their duals. We identify this category Sp(beta) with a direct limit of quotients of a dual idempotented quantum group (U) over dot(q) (gl(r+s)), proving a mixed version of skew Howe duality in which exterior powers and their duals appear at the same time. We show that the category Sp(beta) gives a unified natural setting for defining the colored gl(m vertical bar n) link invariant (for beta = m - n) and the colored HOMFLY-PT polynomial (for beta generic). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2733 / 2779
页数:47
相关论文
共 50 条
  • [1] Webs and quantum skew Howe duality
    Sabin Cautis
    Joel Kamnitzer
    Scott Morrison
    Mathematische Annalen, 2014, 360 : 351 - 390
  • [2] Webs and quantum skew Howe duality
    Cautis, Sabin
    Kamnitzer, Joel
    Morrison, Scott
    MATHEMATISCHE ANNALEN, 2014, 360 (1-2) : 351 - 390
  • [3] Categorical geometric skew Howe duality
    Cautis, Sabin
    Kamnitzer, Joel
    Licata, Anthony
    INVENTIONES MATHEMATICAE, 2010, 180 (01) : 111 - 159
  • [4] Categorical geometric skew Howe duality
    Sabin Cautis
    Joel Kamnitzer
    Anthony Licata
    Inventiones mathematicae, 2010, 180 : 111 - 159
  • [5] On a symplectic quantum Howe duality
    Bodish, Elijah
    Tubbenhauer, Daniel
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (04)
  • [6] Skew Howe duality and limit shapes of Young diagrams
    Nazarov, Anton
    Postnova, Olga
    Scrimshaw, Travis
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [7] Categorified skew Howe duality and comparison of knot homologies
    Mackaay, Marco
    Webster, Ben
    ADVANCES IN MATHEMATICS, 2018, 330 : 876 - 945
  • [8] Howe Duality of Type P
    Davidson, Nicholas
    Kujawa, Jonathan R.
    Muth, Robert
    TRANSFORMATION GROUPS, 2024,
  • [9] Quantum Howe duality and invariant polynomials
    Futorny, Vyacheslav
    Krizka, Libor
    Zhang, Jian
    JOURNAL OF ALGEBRA, 2019, 530 : 326 - 367
  • [10] Howe duality for quantum queer superalgebras
    Chang, Zhihua
    Wang, Yongjie
    JOURNAL OF ALGEBRA, 2020, 547 : 358 - 378