What kind of hypotheses can be tested using a two-sample Wilcoxon test?

被引:0
|
作者
Orlov, AI [1 ]
机构
[1] Bauman Moscow State Tech Univ, Moscow, Russia
来源
INDUSTRIAL LABORATORY | 1999年 / 65卷 / 01期
关键词
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Evidence is given that the Wilcoxon (Mann - Whitney) two-sample test can be used for testing the hypothesis H-0: P (X < Y) = 1/2, where X and Y are random variables, the components of two samples. An asymptotic (for large sample sizes) distribution of the statistic of this test is analyzed for various versions of the null and alternative hypotheses. Three examples demonstrative of this analysis are given.
引用
收藏
页码:52 / 56
页数:5
相关论文
共 50 条
  • [1] On the Power of a New Statistical Test and Two-Sample Wilcoxon Test
    Salov, G. I.
    [J]. OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2014, 50 (01) : 36 - 48
  • [2] An adaptive two-sample test based on modified Wilcoxon scores
    OGorman, TW
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1996, 25 (02) : 459 - 479
  • [3] A pretest for using logrank or Wilcoxon in the two-sample problem
    Darilay, Annie Tordilla
    Naranjo, Joshua D.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (07) : 2400 - 2409
  • [4] Sufficient condition for admissibility of the Wilcoxon test in the classical two-sample problem
    Yu, QQ
    [J]. STATISTICS, 2004, 38 (04) : 295 - 305
  • [5] An improved ranked set two-sample Mann-Whitney-Wilcoxon test
    Öztürk, Ö
    Wolfe, DA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (01): : 123 - 135
  • [6] Two-sample t α -test for testing hypotheses in small-sample experiments
    Tan, Yuan-De
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2023, 19 (01): : 1 - 19
  • [7] Case for omitting tied observations in the two-sample t-test and the Wilcoxon-MannWhitney Test
    McGee, Monnie
    [J]. PLOS ONE, 2018, 13 (07):
  • [8] A TWO-SAMPLE TEST
    Moses, Lincoln E.
    [J]. PSYCHOMETRIKA, 1952, 17 (03) : 239 - 247
  • [9] A Witness Two-Sample Test
    Kuebler, Jonas M.
    Jitkrittum, Wittawat
    Schoelkopf, Bernhard
    Muandet, Krikamol
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [10] A Kernel Two-Sample Test
    Gretton, Arthur
    Borgwardt, Karsten M.
    Rasch, Malte J.
    Schoelkopf, Bernhard
    Smola, Alexander
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 723 - 773