Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon

被引:106
|
作者
Boyle-Yarwood, Stephanie A. [1 ]
Bottomley, Peter J. [1 ,2 ]
Myrold, David D. [1 ]
机构
[1] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
D O I
10.1111/j.1462-2920.2008.01600.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
This study determined nitrification activity and nitrifier community composition in soils under stands of red alder (Alnus rubra) and Douglas fir (Pseudotsuga menziesii) at two sites in Oregon. The H.J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon, has low net N mineralization and gross nitrification rates. Cascade Head Experimental Forest, in the Coast Range, has higher net N mineralization and nitrification rates and soil pH is lower. Communities of putative bacterial [ammonia-oxidizing bacteria (AOB)] and archaeal [ammonia-oxidizing archaea (AOA)] ammonia oxidizers were examined by targeting the gene amoA, which codes for subunit A of ammonia monooxygenase. Nitrification potential was significantly higher in red alder compared with Douglas-fir soil and greater at Cascade Head than H.J. Andrews. Ammonia-oxidizing bacteria amoA genes were amplified from all soils, but AOA amoA genes could only be amplified at Cascade Head. Gene copy numbers of AOB and AOA amoA were similar at Cascade Head regardless of tree type (2.3-6.0 x 10(6) amoA gene copies g(-1) of soil). DNA sequences of amoA revealed that AOB were members of Nitrosospira clusters 1, 2 and 4. Ammonia-oxidizing bacteria community composition, determined by terminal restriction fragment length polymorphism (T-RFLP) profiles, varied among sites and between tree types. Many of the AOA amoA sequences clustered with environmental clones previously obtained from soil; however, several sequences were more similar to clones previously recovered from marine and estuarine sediments. As with AOB, the AOA community composition differed between red alder and Douglas-fir soils.
引用
收藏
页码:2956 / 2965
页数:10
相关论文
共 50 条
  • [1] Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils
    Lu, Xinda
    Bottomley, Peter J.
    Myrold, David D.
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2015, 85 : 54 - 62
  • [2] Composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities in paddy soils of different rice cultivars
    宋亚娜
    林智敏
    林捷
    [J]. 中国生态农业学报(中英文), 2009, (06) : 1211 - 1215
  • [3] Evidence for Different Contributions of Archaea and Bacteria to the Ammonia-Oxidizing Potential of Diverse Oregon Soils
    Taylor, Anne E.
    Zeglin, Lydia H.
    Dooley, Sandra
    Myrold, David D.
    Bottomley, Peter J.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (23) : 7691 - 7698
  • [4] A review of ammonia-oxidizing bacteria and archaea in Chinese soils
    Shen, Ju-Pei
    Zhang, Li-Mei
    Di, Hong J.
    He, Ji-Zheng
    [J]. FRONTIERS IN MICROBIOLOGY, 2012, 3
  • [5] Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam
    Shen, Ju-Pei
    Zhang, Li-Mei
    Zhu, Yong-guan
    Zhang, Jia-bao
    He, Ji-zheng
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2008, 10 (06) : 1601 - 1611
  • [6] Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest
    Zhang, Li-Mei
    Wang, Mu
    Prosser, James I.
    Zheng, Yuan-Ming
    He, Ji-Zheng
    [J]. FEMS MICROBIOLOGY ECOLOGY, 2009, 70 (02) : 208 - 217
  • [7] Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid
    Cycon, Mariusz
    Piotrowska-Seget, Zofia
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [8] Impacts of Edaphic Factors on Communities of Ammonia-Oxidizing Archaea, Ammonia-Oxidizing Bacteria and Nitrification in Tropical Soils
    de Gannes, Vidya
    Eudoxie, Gaius
    Hickey, William J.
    [J]. PLOS ONE, 2014, 9 (02):
  • [9] Higher abundance of ammonia-oxidizing bacteria than ammonia-oxidizing archaea in biofilms and the microbial community composition of Kaiping Diaolou of China
    Liang, Xueji
    Meng, Shanshan
    He, Zhixiao
    Zeng, Xiangwei
    Peng, Tao
    Huang, Tongwang
    Wang, Jiaying
    Gu, Ji-Dong
    Hu, Zhong
    [J]. INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2023, 184
  • [10] Inhibition of ammonia-oxidizing bacteria promotes the growth of ammonia-oxidizing archaea in ammonium-rich alkaline soils
    Chang YIN
    Xiaoping FAN
    Hao CHEN
    Mujun YE
    Guochao YAN
    Tingqiang LI
    Hongyun PENG
    Shengzhe E
    Zongxian CHE
    Steven AWAKELIN
    Yongchao LIANG
    [J]. Pedosphere, 2022, 32 (04) : 532 - 542