Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods

被引:105
|
作者
Jian, Jin-Ming [1 ,2 ,3 ]
Fu, Linfeng [1 ]
Ji, Jiaying [1 ]
Lin, Liwei [4 ]
Guo, Xishan [1 ]
Ren, Tian-Ling [2 ,3 ]
机构
[1] Zhejiang Univ, Biosensors Natl Special Lab, Coll Biosyst Engn & Food Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[4] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, 5101-B Etcheverry, Berkeley, CA 94720 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Electrochemically reduced graphene oxide; Gold nanoparticles; Single-step electroreduction; Nitrite; Electrochemical sensor; GOLD NANOPARTICLES; SENSITIVE DETECTION; SENSOR; NANOCOMPOSITE; OXIDATION; FILMS; NITRATE; HYBRID;
D O I
10.1016/j.snb.2018.01.164
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Via a single-step electroreduction, the electrochemically reduced graphene oxide/gold nanoparticles (ERGO/AuNPs) composite was prepared on a disposable screen-printed carbon electrode (SPCE) for nitrite sensing. The AuNPs can be well dispersed in the stacked and wrinkled ERGO sheets. The possible mechanism for forming the unique structure of the hybrid composite was proposed. The electrochemical studies showed that AuNPs were efficient electrocatalysts towards the oxidation of nitrite, while the winkled ERGO sheets provide a 3D network scaffold for attachment of AuNPs and absorption of abundant nitrite, and promote the rapid heterogeneous electron transfer. The optimization of electrochemical reaction conditions also has been performed. The optimized electrode exhibited excellent properties for the detection of nitrite, including a low oxidation potential (0.65 V), wide linear range (1-6000 mu M), high sensitivity (0.3048 mu A M-1 cm(-2)), low detection limit of 0.13 mu M (S/N = 3), and great selectivity. Moreover, the good accuracy and recovery of ERGO/AuNPs based electrochemical sensor were achieved in the analysis of nitrite in various real food samples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 50 条
  • [1] Electrocatalytic Oxidation of NADH on Graphene Oxide and Reduced Graphene Oxide Modified Screen-Printed Electrode
    Zhang, Lei
    Li, Yang
    Zhang, Li
    Li, Da-Wei
    Karpuzov, Dimitre
    Long, Yi-Tao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2011, 6 (03): : 819 - 829
  • [2] Reduced Graphene Oxide/Gold Nanoparticles Modified Screen-Printed Electrode for the Determination of Palmitic Acid
    Ching, Chin Boon
    Abdullah, Jaafar
    Yusof, Nor Azah
    JOURNAL OF SENSORS, 2021, 2021
  • [3] Electrochemically Reduced Graphene Oxide as Screen-printed Electrode Modifier for Fenamiphos Determination
    Gevaerd, A.
    Watanabe, E. Y.
    Fernandes, K.
    Papi, M. A. P.
    Banks, C. E.
    Bergamini, M. F.
    Marcolino-Junior, L. H.
    ELECTROANALYSIS, 2020, 32 (08) : 1689 - 1695
  • [4] Application of Electrochemically Reduced Graphene Oxide on Screen-Printed Ion-Selective Electrode
    Ping, Jianfeng
    Wang, Yixian
    Ying, Yibin
    Wu, Jian
    ANALYTICAL CHEMISTRY, 2012, 84 (07) : 3473 - 3479
  • [5] Sensitive electrochemical sensor based on nickel/PDDA/reduced graphene oxide modified screen-printed carbon electrode for nitrite detection
    Paisanpisuttisin, Aunyarut
    Poonwattanapong, Praewpitcha
    Rakthabut, Punnada
    Ariyasantichai, Paranee
    Prasittichai, Chaiya
    Siriwatcharapiboon, Wilai
    RSC ADVANCES, 2022, 12 (45) : 29491 - 29502
  • [6] Voltammetric sandwich immunoassay for Cronobacter sakazakii using a screen-printed carbon electrode modified with horseradish peroxidase, reduced graphene oxide, thionine and gold nanoparticles
    Fanjun Zhu
    Guangying Zhao
    Wenchao Dou
    Microchimica Acta, 2018, 185
  • [7] Voltammetric sandwich immunoassay for Cronobacter sakazakii using a screen-printed carbon electrode modified with horseradish peroxidase, reduced graphene oxide, thionine and gold nanoparticles
    Zhu, Fanjun
    Zhao, Guangying
    Dou, Wenchao
    MICROCHIMICA ACTA, 2018, 185 (01)
  • [8] Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid
    Arpad Szoke
    Zoltan Zsebe
    Graziella Liana Turdean
    Liana Maria Muresan
    Electrocatalysis, 2019, 10 : 573 - 583
  • [9] Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid
    Szoke, Arpad
    Zsebe, Zoltan
    Turdean, Graziella Liana
    Muresan, Liana Maria
    ELECTROCATALYSIS, 2019, 10 (05) : 573 - 583
  • [10] Electrochemically Reduced Graphene Oxide Modified Screen-Printed Electrodes for Sensitive Determination of Acetylsalicylic Acid
    Zhao, Chunzhi
    Ling, Jihong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (11): : 10177 - 10186