Implicit finite element formulation of multiresolution continuum theory

被引:2
|
作者
Qin, Hao [1 ]
Lindgren, Lars-Erik [1 ]
Liu, Wing Kam [2 ]
Smith, Jacob [2 ]
机构
[1] Lulea Univ Technol, S-97187 Lulea, Sweden
[2] Northwestern Univ, Evanston, IL USA
关键词
Multiresolution continuum theory; Finite element method; Damage; Localization; STRAIN GRADIENT PLASTICITY; HETEROGENEOUS MATERIALS; MICRO-STRUCTURE; MICROSTRUCTURE; MECHANICS;
D O I
10.1016/j.cma.2015.04.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The multiresolution continuum theory is a higher order continuum theory where additional kinematic variables account for microstructural inhomogeneities at several distinct length scales. This can be particularly important for localization problems. The strength of this theory is that it can account for details in the microstructure of a material without using an extremely fine mesh. The present paper describes the implementation and verification of a 3D elastic-plastic multiresolution element based on an implicit time stepping algorithm. It is implemented in the general purpose finite element program FEAP. The mesh independency associated with the length scale parameter is examined and the convergence rate of the element is also evaluated. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 130
页数:17
相关论文
共 50 条
  • [1] Concurrent multiresolution finite element: formulation and algorithmic aspects
    Tang, Shan
    Kopacz, Adrian M.
    O'Keeffe, Stephanie Chan
    Olson, Gregory B.
    Liu, Wing Kam
    COMPUTATIONAL MECHANICS, 2013, 52 (06) : 1265 - 1279
  • [2] Concurrent multiresolution finite element: formulation and algorithmic aspects
    Shan Tang
    Adrian M. Kopacz
    Stephanie Chan O’Keeffe
    Gregory B. Olson
    Wing Kam Liu
    Computational Mechanics, 2013, 52 : 1265 - 1279
  • [3] An improved strain gradient plasticity formulation with energetic interfaces: theory and a fully implicit finite element formulation
    Dahlberg, Carl F. O.
    Faleskog, Jonas
    COMPUTATIONAL MECHANICS, 2013, 51 (05) : 641 - 659
  • [4] An improved strain gradient plasticity formulation with energetic interfaces: theory and a fully implicit finite element formulation
    Carl F. O. Dahlberg
    Jonas Faleskog
    Computational Mechanics, 2013, 51 : 641 - 659
  • [5] Finite element formulation for implicit magnetostrictive constitutive relations
    S. Sudersan
    U. Saravanan
    A. Arockiarajan
    Computational Mechanics, 2020, 66 : 1497 - 1514
  • [6] Finite element formulation for implicit magnetostrictive constitutive relations
    Sudersan, S.
    Saravanan, U.
    Arockiarajan, A.
    COMPUTATIONAL MECHANICS, 2020, 66 (06) : 1497 - 1514
  • [7] Semi-implicit formulation of the immersed finite element method
    Wang, Xingshi
    Wang, Chu
    Zhang, Lucy T.
    COMPUTATIONAL MECHANICS, 2012, 49 (04) : 421 - 430
  • [8] Semi-implicit formulation of the immersed finite element method
    Xingshi Wang
    Chu Wang
    Lucy T. Zhang
    Computational Mechanics, 2012, 49 : 421 - 430
  • [9] An implicit finite element formulation for finite deformation of elastic-plastic continua
    Ogawa, S
    Hamauzu, S
    Kikuma, T
    MATERIALS SCIENCE RESEARCH INTERNATIONAL, 2000, 6 (02): : 88 - 95
  • [10] FORMULATION OF IMPLICIT FINITE-ELEMENT METHODS FOR MULTIPLICATIVE FINITE DEFORMATION PLASTICITY
    MORAN, B
    ORTIZ, M
    SHIH, CF
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 29 (03) : 483 - 514